有向图的拓扑排序——BFS这篇文章中,介绍了有向图的拓扑排序的定义以及使用广度优先搜索(BFS)对有向图进行拓扑排序的方法,这里再介绍另一种方法:深度优先搜索(DFS)。

算法

考虑下面这张图:

首先,我们需要维护一个栈,用来存放DFS到的节点。另外规定每个节点有两个状态:未访问(这里用蓝绿色表示)、已访问(这里用黑色表示)。

任选一个节点开始DFS,比如这里就从0开始吧。

首先将节点0的状态设为已访问,然后节点0的邻居(节点0的出边指向的节点)共有1个:节点2,它是未访问状态,于是顺下去访问节点2。

节点2的状态也设为已访问。节点2有3个邻居:3、4、5,都是未访问状态,不妨从3开始。一直这样访问下去,直到访问到没有出边的节点7。

节点7没有出边了,这时候就将节点7入栈。

退回到节点6,虽然6还有邻居,但是唯一的邻居节点7是已访问状态,也入栈。再次退回,节点4的两个邻居也都已访问,依旧入栈并后退。以此类推,退回到节点2。

节点2有3个邻居,其中节点3和4已访问,但是节点5还未访问,访问节点5。

接下来的步骤是一样的,不再赘述了,直接退回到节点0并将0入栈。

现在,从节点0开始的DFS宣告结束,但是图中还有未访问的节点:节点1,从节点1继续开始DFS。

节点1的邻居节点2已经访问过了,直接将节点1入栈。

至此,整个DFS过程宣告结束。从栈顶到栈底的节点序列1 0 2 5 3 4 6 7就是整个图的一个拓扑排序序列。

实现

这里同样使用类型别名node_t代表节点序号unsigned long long

using node_t = unsigned long long;

同样使用邻接表来存储图结构,整个图的定义如下:

class Graph {
unsigned long long n;
vector<vector<node_t>> adj; protected:
void dfs(node_t cur, vector<bool> &visited, stack<node_t> &nodeStack); public:
Graph(initializer_list<initializer_list<node_t>> list) : n(list.size()), adj({}) {
for (auto &l : list) {
adj.emplace_back(l);
}
} vector<node_t> toposortDfs();
};

DFS

函数dfs的参数及说明如下:

  • cur:当前访问的节点。
  • visited:存放各个节点状态的数组,false表示未访问,true表示已访问。初始化为全为false
  • nodeStack:存放节点的栈。

整个过程如下:

  1. 首先,我们需要将当前节点的状态设为已访问:
visited[cur] = true;
  1. 依次检查当前节点的所有邻居的状态:
for (node_t neighbor: adj[cur]) {
// ...
}
  1. 如果某个节点已访问,则跳过。
if (visited[neighbor]) continue;
  1. 否则,递归的对该节点进行DFS:
dfs(neighbor, visited, nodeStack);
  1. 所有邻居检查完后,就将该节点入栈:
nodeStack.push(cur);

整个dfs函数的代码如下:

void Graph::dfs(node_t cur, vector<bool> &visited, stack<node_t> &nodeStack) {
visited[cur] = true;
for (node_t neighbor: adj[cur]) {
if (visited[neighbor]) continue;
dfs(neighbor, visited, nodeStack);
}
nodeStack.push(cur);
}

拓扑排序

我们需要初始化3个数据结构:

  • sort:存放拓扑排序序列的数组。
  • visited:见上文。
  • nodeStack:见上文。
vector<node_t> sort;
vector<bool> visited(n, false);
stack<node_t> nodeStack;

整个过程如下:

  1. 依次检查每个节点的状态,如果未访问,则从该节点开始进行DFS:
for (node_t node = 0; node < n; ++node) {
if (visited[node]) continue;
dfs(node, visited, nodeStack);
}
  1. 此时nodeStack已经存储了整个拓扑排序序列,我们只需要转移到sort数组并返回即可:
while (!nodeStack.empty()) {
sort.push_back(nodeStack.top());
nodeStack.pop();
}
return sort;

整个代码如下:

vector<node_t> Graph::toposortDfs() {
vector<node_t> sort;
vector<bool> visited(n, false);
stack<node_t> nodeStack;
for (node_t node = 0; node < n; ++node) {
if (visited[node]) continue;
dfs(node, visited, nodeStack);
}
while (!nodeStack.empty()) {
sort.push_back(nodeStack.top());
nodeStack.pop();
}
return sort;
}

测试

代码:

int main() {
Graph graph{{2},
{2},
{3, 4, 5},
{4},
{6, 7},
{4},
{7},
{}};
auto sort = graph.toposortDfs();
cout << "The topology sort sequence is:\n";
for (const auto &node: sort) {
cout << node << ' ';
}
return 0;
}

输出:

The topology sort sequence is:
1 0 2 5 3 4 6 7

复杂度分析

  • 时间复杂度:\(O(n+e)\),\(n\)为节点总数,\(e\)为边的总数。其中DFS的时间复杂度为\(O(n+e)\)。
  • 空间复杂度:\(O(n)\)(邻接表的空间复杂度为\(O(n+e)\),不计入在内),其中维护visited数组和nodeStack栈分别需要\(O(n)\)的额外空间。

有向图的拓扑排序——DFS的更多相关文章

  1. ACM/ICPC 之 拓扑排序+DFS(POJ1128(ZOJ1083)-POJ1270)

    两道经典的同类型拓扑排序+DFS问题,第二题较第一题简单,其中的难点在于字典序输出+建立单向无环图,另外理解题意是最难的难点,没有之一... POJ1128(ZOJ1083)-Frame Stacki ...

  2. 拓扑排序+DFS(POJ1270)

    [日后练手](非解题) 拓扑排序+DFS(POJ1270) #include<stdio.h> #include<iostream> #include<cstdio> ...

  3. 拓扑排序-DFS

    拓扑排序的DFS算法 输入:一个有向图 输出:顶点的拓扑序列 具体流程: (1) 调用DFS算法计算每一个顶点v的遍历完成时间f[v] (2) 当一个顶点完成遍历时,将该顶点放到一个链表的最前面 (3 ...

  4. 有向图和拓扑排序Java实现

    package practice; import java.util.ArrayDeque; import java.util.Iterator; import java.util.Stack; pu ...

  5. CodeForces-1217D (拓扑排序/dfs 判环)

    题意 https://vjudge.net/problem/CodeForces-1217D 请给一个有向图着色,使得没有一个环只有一个颜色,您需要最小化使用颜色的数量. 思路 因为是有向图,每个环两 ...

  6. 有向图的拓扑排序算法JAVA实现

    一,问题描述 给定一个有向图G=(V,E),将之进行拓扑排序,如果图有环,则提示异常. 要想实现图的算法,如拓扑排序.最短路径……并运行看输出结果,首先就得构造一个图.由于构造图的方式有很多种,这里假 ...

  7. Ordering Tasks(拓扑排序+dfs)

    Ordering Tasks John has n tasks to do. Unfortunately, the tasks are not independent and the executio ...

  8. HDU 5438 拓扑排序+DFS

    Ponds Time Limit: 1500/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Total Sub ...

  9. C++编程练习(12)----“有向图的拓扑排序“

    设G={V,E}是一个具有 n 个顶点的有向图,V中的顶点序列 v1,v2,......,vn,满足若从顶点 vi 到 vj 有一条路径,则在顶点序列中顶点 vi 必在顶点 vj 之前.则称这样的顶点 ...

  10. POJ1128 Frame Stacking(拓扑排序+dfs)题解

    Description Consider the following 5 picture frames placed on an 9 x 8 array.  ........ ........ ... ...

随机推荐

  1. strut2 标签加载图表。

    //===============================================超市订单量走势图========================================= v ...

  2. tensorflow-gpu版本安装及深度神经网络训练与cpu版本对比

    tensorflow1.0和tensorflow2.0的区别主要是1.0用的静态图 一般情况1.0已经足够,但是如果要进行深度神经网络的训练,当然还是tensorflow2.*-gpu比较快啦. 其中 ...

  3. JWT基础概念详解

    JWT基础概念详解 JWT介绍 之前我们文章讲过分布式session如何存储,其中就讲到过Token.JWT.首先,我们来回顾一下使用Token进行身份认证. 客户端发送登录请求到服务器 服务器在用户 ...

  4. 人生苦短,我用 python 之入门篇

    Python 是一种跨平台的,开源的,免费的,解释型的高级编程语言,它具有丰富和强大的库,其应用领域也非常广泛,在 web 编程/图形处理/黑客编程/大数据处理/网络爬虫和科学计算等领域都能找到其身影 ...

  5. 鹅长微服务发现与治理巨作PolarisMesh实践-上

    @ 目录 概述 定义 核心功能 组件和生态 特色亮点 解决哪些问题 官方性能数据 架构原理 资源模型 服务治理 基本原理 服务注册 服务发现 安装 部署架构 集群安装 SpringCloud应用接入 ...

  6. 二十六、StatefulSet资源控制器

    StatefulSet资源控制器 一.statefulset介绍 StatefulSet 是为了解决有状态服务的问题而设计的资源控制器. 匹配 Pod name ( 网络标识 ) 的模式为:(stat ...

  7. 浅入浅出 1.7和1.8的 HashMap

    前言 HashMap 是我们最最最常用的东西了,它就是我们在大学中学习数据结构的时候,学到的哈希表这种数据结构.面试中,HashMap 的问题也是常客,现在卷到必须答出来了,是必须会的知识. 我在学习 ...

  8. 2022NISACTF--WEB

    easyssrf 打开题目,显示的是 尝试输入, 发现输入flag有东西 读取文件 访问下一个网站 读取文件 不能以file开头 直接伪协议,base64解码 checkIn 奇怪的unicode编码 ...

  9. UML建模语言、设计原则、设计模式

    1.UML统一建模语言 定义:用于软件系统设计与分析的语言工具 目的:帮助开发人员更好的梳理逻辑.思路 学习地址:UML概述_w3cschool 官网:https://www.omg.org/spec ...

  10. Python学习之实例3

    一.文字读取并打印拼接字符串 1 with open('G:\python\char.txt') as f: #使用open()函数以只读模式打开文件 2 s=f.read() #使用read()方法 ...