P1896 [SCOI2005] 互不侵犯 方法记录
[SCOI2005] 互不侵犯
题目描述
在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案。国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子。
注:数据有加强(2018/4/25)
输入格式
只有一行,包含两个数N,K ( 1 <=N <=9, 0 <= K <= N * N)
输出格式
所得的方案数
样例 #1
样例输入 #1
3 2
样例输出 #1
16
审题
由题目可得:棋盘上国王割据的过程是随着“阶段”的增长,在每个状态维度上不断扩展的。在任意时刻,已经求出最优解的状态与尚未求出最优解的状态在各维度上的分界点组成了DP扩展的“轮廓”。而在这道题中,我们需要经济地保存棋盘的详细状态,所以想到状态压缩DP。
状态压缩DP介绍
以本题为例,假如有一行的国王放置状态如下

这里使用两个数组记录状态
sit[i]表示有无国王的二进制状态
sta[i]表示国王的个数
则如上图\(sit[i]=(100101)_2=37\),\(sta[i]=3\).
这样一来,一行中国王的状态就被压缩到一个维度中
推导转移方程
\(f[i][j][s]+=f[i-1][k][s-sta[j]]\)
其中,i表示第i行,j表示当前国王状态,s表示当前国王个数,结合sit[],sta[]表示。
预处理每一个状态
dfs(x,num,cur)元素含义:x表示递归的层数,num表示已经上场的国王数量,cur表示当前遍历到的位置(行)
点击查看代码
void dfs(int x,int num,int cur)//预处理每一个状态
{
if(cur>=n)//超出边界,处理完毕
{
sit[++cnt]=x;
sta[cnt]=num;
return ;
}
dfs(x,num,cur+1);//当前位置不放国王:国王数量不变,下一个位置可以放国王,故指向下一个位置
dfs(x+(1<<cur),num+1,cur+2);//当前位置放国王:国王数量+1,下一个位置不可以放国王,故指向下下个位置
}
判断冲突情况
知识点:位运算
点击查看代码
if(sit[j]&sit[x]) continue;//x:当前行位置国王放置情况;j:正上方位置国王放置情况。上下冲突
if((sit[j]<<1)&sit[x]) continue;//左上右下冲突
if(sit[j]&(sit[x]<<1)) continue;//右上左下冲突
以下为图示

程序大致框架:
输入->预处理->DP循环(判断冲突)->统计答案->输出。
完整带注释代码
点击查看代码
#include<cstdio>
#include<iostream>
#include<cstring>
#include<cmath>
#include<string>
#include<algorithm>
using namespace std;
int sit[2000],sta[2000];
//sit[i]表示有无国王的二进制状态
//sta[i]表示国王的个数
int cnt=0;
int n,k;
long long f[10][2000][100]={0};
//dfs(x,num,cur)元素含义:x 递归的层数;num 已经上场的国王数量;cur当前遍历到的位置(行)
void dfs(int x,int num,int cur)//预处理每一个状态
{
if(cur>=n)//超出边界,处理完毕
{
sit[++cnt]=x;
sta[cnt]=num;
return ;
}
dfs(x,num,cur+1);//当前位置不放国王:国王数量不变,下一个位置可以放国王,故指向下一个位置
dfs(x+(1<<cur),num+1,cur+2);//当前位置放国王:国王数量+1,下一个位置不可以放国王,故指向下下个位置
}
//f[i][j][s]+=f[i-1][k][s-sta[j]]状态转移方程
//i=第i行;j=当前国王的状态;s=当前国王的个数,可以用sit[]sta[]表示
int main()
{
scanf("%d%d",&n,&k);
dfs(0,0,0);//预处理
for(int i=1;i<=cnt;i++)f[1][i][sta[i]]=1;//处理第一行:防止越界
for(int i=2;i<=n;i++)
for(int j=1;j<=cnt;j++)
for(int x=1;x<=cnt;x++)//x为j正下方的位置
{
if(sit[j]&sit[x]) continue;//x:当前行位置国王放置情况;j:正上方位置国王放置情况。上下冲突
if((sit[j]<<1)&sit[x]) continue;//左上右下冲突
if(sit[j]&(sit[x]<<1)) continue;//右上左下冲突
for(int s=sta[j];s<=k;s++)f[i][j][s]+=f[i-1][x][s-sta[j]];
}
long long ans=0;
for(int i=1;i<=cnt;i++)ans+=f[n][i][k];//n行矩阵,放置k个国王的情况总数
printf("%lld",ans);
return 0;
}
这个视频给我的理解带来极大的帮助
(而且声音很甜很好听)
https://www.bilibili.com/video/av681073078/?vd_source=b9e2e351c4ebc946cfd86808c70b65ce
P1896 [SCOI2005] 互不侵犯 方法记录的更多相关文章
- 洛谷 P1896 [SCOI2005]互不侵犯
洛谷 P1896 [SCOI2005]互不侵犯 题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8 ...
- 洛谷P1896 [SCOI2005]互不侵犯King
P1896 [SCOI2005]互不侵犯King 题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共 ...
- 洛谷——P1896 [SCOI2005]互不侵犯
P1896 [SCOI2005]互不侵犯 状压DP入门题 状压DP一般需要与处理状态是否合法,节省时间 设定状态dp[i][j][k]表示第i行第j个状态选择国王数为k的方案数 $dp[i][j][n ...
- 洛谷 P1896 [SCOI2005]互不侵犯 (状态压缩DP)
题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. 注:数据有加强(2018/4/25) ...
- 洛谷 P1896 [SCOI2005]互不侵犯King
题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. 输入输出格式 输入格式: 只有一行,包 ...
- P1896 [SCOI2005]互不侵犯King
题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. 输入输出格式 输入格式: 只有一行,包 ...
- 洛谷P1896 [SCOI2005]互不侵犯King【状压DP】
题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. 输入格式: 只有一行,包含两个数N,K ...
- P1896 [SCOI2005]互不侵犯
题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. 注:数据有加强(2018/4/25) ...
- 【题解】洛谷P1896 [SCOI2005] 互不侵犯(状压DP)
洛谷P1896:https://www.luogu.org/problemnew/show/P1896 前言 这是一道状压DP的经典题 原来已经做过了 但是快要NOIP 复习一波 关于一些位运算的知识 ...
随机推荐
- 部署CDH集群环境准备
一.系统centOS7以上,至少三台主机 添加ip 主机名映射关系:(每台主机都要做) vim /etc/hosts 127.0.0.1 localhost localhost.localdomain ...
- Mqtt开发笔记:windows下C++ ActiveMQ客户端介绍、编译和使用
前话 项目需求,需要使用到mqtt协议,之前编译QtMqtt库,不支持队列模式queue(点对点),只支持订阅/发布者模式.,所以使用C++ ActiveMQ实现. MQTT协议 简介 M ...
- 3. 安装部署MGR集群 | 深入浅出MGR
GreatSQL社区原创内容未经授权不得随意使用,转载请联系小编并注明来源. 目录 1. 安装准备 2. 初始化MySQL Server 3. 初始化MGR第一个节点 4. 继续设置另外两个节点 5. ...
- 论文翻译:2021_LACOPE: Latency-Constrained Pitch Estimation for Speech Enhancement
论文地址:延迟约束的语音增强基音估计 引用格式:Schröter H, Rosenkranz T, Escalante-B A N, et al. LACOPE: Latency-Constraine ...
- Java SE 9 模块化示例
Java SE 9 模块化示例 作者:Grey 原文地址:Java SE 9 模块化示例 说明 Java SE 9引入了模块系统,模块就是代码和数据的封装体.模块的代码被组织成多个包,每个包中包含Ja ...
- 随机视频API
首先打开服务器创建一个html文件也可以不创建 代码如下 点击查看代码 <!DOCTYPE html> <html lang="zh-CN"> <he ...
- java数组---多维数组
多维数组 多维数组可以看成是数组的数组 比如二维数组就是一个特殊的一维数组,其每一个元素都是一个一维数组. 二维数组 public static void main(String[] args) { ...
- 面试现场!月薪3w+的这些数据挖掘SQL面试题你都掌握了吗? ⛵
作者:韩信子@ShowMeAI 数据分析实战系列:https://www.showmeai.tech/tutorials/40 AI 面试题库系列:https://www.showmeai.tech/ ...
- RabbitMQ 入门系列:8、扩展内容:接收信息时:可否根据RoutingKey过滤监听信息,答案是不能。
系列目录 RabbitMQ 入门系列:1.MQ的应用场景的选择与RabbitMQ安装. RabbitMQ 入门系列:2.基础含义:链接.通道.队列.交换机. RabbitMQ 入门系列:3.基础含义: ...
- plpgsql 编译执行
Oracle 的存储过程或函数提供了两种执行方式: 解释执行:将源代码逐条转换成目标代码,解释一条,执行一条的过程.PLPGSQL将语句翻译成中间形式的系统代码,并在运行时进行解释. 编译执行:将源代 ...