点我看题

G - Sequence in mod P

稍微观察一下就会发现,进行x次操作后的结果是\(A^xS+(1+\cdots +A^{x-1})B\)。如果没有右边那一坨关于B的东西,那我们要求的就是满足\(A^x \equiv \frac GS\)的最小的x(离散对数)。有一个叫BSGS的东西是专门干这个的

考虑能不能把这个式子直接化成\(A^x \equiv B\)的形式。先把答案=0、A=0和A=1的情况特判掉,因为会影响后面推式子。

\[\begin{align}
A^xS+(1+\cdots+A^{x-1})B&\equiv G\\
A^xS+\frac{A^x-1}{A-1}B&\equiv G(等比数列求和)\\
A^xS+\frac{A^x}{A-1}B&\equiv G+\frac1{A-1}B\\
A^x\cdot(S+\frac B{A-1})&\equiv G+\frac1{A-1}B\\
A^x&\equiv \frac{G+\frac B{A-1}}{S+\frac B{A-1}}
\end{align}
\]

进行上面的最后一步之前判断\(S+\frac B{A-1}\)是否为0,如果是0的话答案就是1,因为之前已经特判过答案为0的情况了;否则就直接跑BSGS就行了。

边界很多,写的时候注意一点。

时间复杂度\(O(t\sqrt P)\)。

点击查看代码
#include <bits/stdc++.h>

#define rep(i,n) for(int i=0;i<n;++i)
#define repn(i,n) for(int i=1;i<=n;++i)
#define LL long long
#define pii pair <int,int>
#define pb push_back
#define fi first
#define se second
#define mpr make_pair
#define MOD P using namespace std; LL t,P,A,B,S,G,lim;
map <LL,LL> mp; LL qpow(LL x,LL a)
{
LL res=x,ret=1;
while(a>0)
{
if((a&1)==1) ret=ret*res%MOD;
a>>=1;
res=res*res%MOD;
}
return ret;
} int main()
{
cin>>t;
rep(tn,t)
{
cin>>P>>A>>B>>S>>G;
if(S==G)
{
puts("0");
continue;
}
if(A==0)
{
if(B==G) puts("1");
else puts("-1");
continue;
}
if(A==1)
{
if(B==0)
{
puts("-1");
continue;
}
LL tmp=(G-S+P)%P;(tmp*=qpow(B,P-2))%=P;
cout<<tmp<<endl;
continue;
}
LL right=(G+B*qpow(A-1,P-2))%P,mul=(S+B*qpow(A-1,P-2))%P;
if(mul==0)
{
if(right==0)
{
puts("1");
continue;
}
puts("-1");
continue;
}
(right*=qpow(mul,P-2))%=P; //A^ans = right
//bsgs
lim=ceil(sqrt((double)P));
mp.clear();
LL cur=1;
rep(i,lim)
{
LL res=right*cur%P;
if(mp.find(res)==mp.end()) mp[res]=i;
else mp[res]=max(mp[res],(LL)i);
(cur*=A)%=P;
}
LL bas=1;rep(i,lim) (bas*=A)%=MOD;
cur=bas;
LL ans=1e18;
repn(a,lim)
{
if(mp.find(cur)!=mp.end())
{
LL curres=(LL)a*lim-mp[cur];
if(curres<0) curres+=P-1;
curres%=(P-1);
ans=min(ans,curres);
}
(cur*=bas)%=P;
}
if(ans==1e18) puts("-1");
else cout<<ans<<endl;
}
return 0;
}

Ex - add 1

官方题解精简版,供懒人食用。

注意到输入的a数组是单调不降的。令当前所有counter的值分别为\(c_1,c_2 \cdots c_n\)(下标从1开始)。定义一个\(c_1 \cdots c_n\)的状态的"值"为\(max_{i=1}^n\{max(0,a_i-c_i)\}\)。容易发现:这个值在\([0,a_n]\)中,值为0的时候我们就达到目标了,并且一次操作只能让这个值最多减少1。考虑一个值为k的状态(k>0)经过恰好1次操作会怎么变化。首先由于\(a_1=0,a_n>0\),所以我们肯定可以找到唯一的r,满足\(a_r<k\leq a_{r+1}\)。现在开始进行操作,我们随机选择一个i把\(c_i\)归零。有两种情况:

  • \(i \leq r\)。\(a_i<k\),所以任意一个\(c_i\)被归零都不会导致状态的新值达到或超过k。所以状态的值减一。
  • \(i>r\)。很显然状态的值会变成\(a_i\)。

所以可以发现所有值相等的状态都是"等价"的,至少它们达到目标的期望步数一定是相等的。令\(dp_i\)表示值为i的状态达到目标的期望步数。\(dp_0\)=0,我们要求\(dp_{a_n}\)。转移比较显然,是这样的:

\[\begin{align}
dp_i&=\frac 1n(r_i \cdot dp_{i-1}+\sum_{j=r_i+1}^n dp_{a_j})+1\\
dp_{i-1}&=\frac 1{r_i} (n(dp_i-1)-\sum_{j=r_i+1}^n dp_{a_j})
\end{align}
\]

其中\(r_i\)就是上面说的每个状态值对应的r。

其实这样已经可做了,但是毕竟我们要求的是\(dp_{a_n}\),但这个式子是从后往前转移的,但我们要求\(dp_{a_n}\),不太方便,所以可以转化一下:令\(f_i=dp_{a_n}-dp_i\),把\(dp_i=dp_{a_n}-f_i\)带入上面的式子,并再把式子两边同时用\(dp_{a_n}\)减。

\[\begin{align}
dp_{a_n}-dp_{i-1}&=dp_{a_n}-\frac 1{r_i}(n \cdot (dp_{a_n}-f_i-1)-dp_{a_n}\cdot(n-r_i)+\sum_{j=r_i+1}^nf_{a_j}) \ \ \ \ \ \ 右边的dp_{a_n}都消掉了\\
f_{i-1} &= \frac 1{r_i}(n \cdot(f_i+1)-\sum_{j=r_i+1}^nf_{a_j})
\end{align}
\]

发现可以把\([0,a_n]\)这个区间分成n-1段处理,分别是\([a_0,a_1-1],[a_1,a_2-1]\cdots\)每段内部的dp转移都相同(因为\(r_{i+1}\)相同)。所以对每一段分别矩阵快速幂转移就可以了。官方题解还有复杂度更低一点的优化,但是这样已经可以过了,稍微有一点点卡常而已。

时间复杂度\(O(2^3\cdot nlog值域)\)。

点击查看代码
#include <bits/stdc++.h>

#define rep(i,n) for(int i=0;i<n;++i)
#define repn(i,n) for(int i=1;i<=n;++i)
#define LL long long
#define pii pair <int,int>
#define pb push_back
#define fi first
#define se second
#define mpr make_pair using namespace std; const LL MOD=998244353; LL qpow(LL x,LL a)
{
LL res=x,ret=1;
while(a>0)
{
if((a&1)==1) ret=ret*res%MOD;
a>>=1;
res=res*res%MOD;
}
return ret;
} LL n,a[200010],y[200010];
vector <vector <LL> > pw[70]; vector <vector <LL> > mul(vector <vector <LL> > a,vector <vector <LL> > b)
{
vector <vector <LL> > ret={{0,0},{0,0}};
rep(i,2) rep(j,2) rep(k,2) (ret[i][j]+=a[i][k]*b[k][j])%=MOD;
return ret;
} int main()
{
cin>>n;
repn(i,n) scanf("%lld",&a[i]);
y[n]=0;
LL sum=0;
for(int i=n-1;i>0;--i)
{
if(a[i]==a[i+1])
{
y[i]=y[i+1];
(sum+=y[i])%=MOD;
continue;
}
LL r=i,add=(n*qpow(r,MOD-2)+(MOD-sum*qpow(r,MOD-2)%MOD))%MOD;
pw[0]={{n*qpow(r,MOD-2)%MOD,1},{0,1}};
vector <vector <LL> > res(0);
LL dist=a[i+1]-a[i],cc=0;
while(dist>0)
{
if(dist&1)
{
if(res.empty()) res=pw[cc];
else res=mul(res,pw[cc]);
}
dist>>=1;++cc;
if(dist==0) break;
pw[cc]=mul(pw[cc-1],pw[cc-1]);
}
y[i]=(res[0][0]*y[i+1]+res[0][1]*add)%MOD; (sum+=y[i])%=MOD;
}
cout<<y[1]<<endl;
return 0;
}

[题解] Atcoder Beginner Contest ABC 270 G Ex 题解的更多相关文章

  1. [题解] Atcoder Beginner Contest ABC 265 Ex No-capture Lance Game DP,二维FFT

    题目 首先明确先手的棋子是往左走的,将其称为棋子1:后手的棋子是往右走的,将其称为棋子2. 如果有一些行满足1在2右边,也就是面对面,那其实就是一个nim,每一行都是一堆石子,数量是两个棋子之间的空格 ...

  2. 题解 AtCoder Beginner Contest 168

    小兔的话 欢迎大家在评论区留言哦~ AtCoder Beginner Contest 168 A - ∴ (Therefore) B - ... (Triple Dots) C - : (Colon) ...

  3. AtCoder Beginner Contest 178 E - Dist Max 题解(推公式)

    题目链接 题目大意 给你n个点(n<=2e5)要你求所有点中两个点最短的曼哈顿距离 曼哈顿距离定义为d(i,j)=|x1-x2|+|y1-y2|. 题目思路 想了很久也没有什么思路,其实就是一个 ...

  4. 【AtCoder Beginner Contest 181】A~F题解

    越学越菜系列 于2020.11.2,我绿了(错乱) A - Heavy Rotation 签到题,奇数Black,偶数White. code: #include<bits/stdc++.h> ...

  5. AtCoder Beginner Contest 053 ABCD题

    A - ABC/ARC Time limit : 2sec / Memory limit : 256MB Score : 100 points Problem Statement Smeke has ...

  6. KYOCERA Programming Contest 2021(AtCoder Beginner Contest 200) 题解

    KYOCERA Programming Contest 2021(AtCoder Beginner Contest 200) 题解 哦淦我已经菜到被ABC吊打了. A - Century 首先把当前年 ...

  7. AtCoder Beginner Contest 184 题解

    AtCoder Beginner Contest 184 题解 目录 AtCoder Beginner Contest 184 题解 A - Determinant B - Quizzes C - S ...

  8. AtCoder Beginner Contest 154 题解

    人生第一场 AtCoder,纪念一下 话说年后的 AtCoder 比赛怎么这么少啊(大雾 AtCoder Beginner Contest 154 题解 A - Remaining Balls We ...

  9. AtCoder Beginner Contest 177 题解

    AtCoder Beginner Contest 177 题解 目录 AtCoder Beginner Contest 177 题解 A - Don't be late B - Substring C ...

随机推荐

  1. 2022-07-21 第四组 java之继承

    目录 一.继承 1.概念 2.语法 3.父类成员访问 3.1 子类访问父类的成员变量 3.1.1 子类和父类中不存在同名的成员变量 3.1.2 子类和父类中不存在同名的成员变量 3.2 子类中访问父类 ...

  2. 单调栈_Largest Rectangle in a Histogram

    题面 https://flowus.cn/xjsc01/share/395ca9dc-315c-4bd5-a942-016709980c03 这里还有很多笔记(归纳好的) https://www.ac ...

  3. C#基础语法之-泛型

    泛型:一共7个知识点 1.引入泛型,延迟声明 2.如何声明和使用泛型 3.泛型的好处和原理 4.泛型类,泛型方法,泛型接口,泛型委托 5.泛型约束 6.协变,逆变 7.泛型缓存 一.为啥会出现泛型,有 ...

  4. Javascript 构造函数、原型对象、实例之间的关系

    # Javascript 构造函数.原型对象.实例之间的关系 # 创建对象的方式 # 1.new object() 缺点:创建多个对象困难 var hero = new Object(); // 空对 ...

  5. 趣味问题《寻人启事》的Python程序解决

    偷懒了很久,今天我终于又来更新博客了~ 最近,我看到了一个趣味问题,或者说是数学游戏:<寻人启事>. 在表述这个问题前,我们需要了解一下"冰雹猜想": 对于任意一个正整 ...

  6. SmartIDE v1.0.23 一个非常不敏捷的发布

    SmartIDE v1.0版本(CLI Build v1.0.23.4650,Server Build v1.0.23.4646)已经发布,在超过4000 个 Builds 之后,我们终于发布了v1. ...

  7. IDEA Git缓慢

    有的公司电脑会强制安装一些特定的杀毒软件或者监控软件. 在安装后,我们的 IDEA 可能会出现 Git 相关操作非常缓慢的情况. 虽然用 Git 命令操作不受影响,但终究没有可视化界面直观方便. 解决 ...

  8. Java开发学习(二十五)----使用PostMan完成不同类型参数传递

    一.请求参数 请求路径设置好后,只要确保页面发送请求地址和后台Controller类中配置的路径一致,就可以接收到前端的请求,接收到请求后,如何接收页面传递的参数? 关于请求参数的传递与接收是和请求方 ...

  9. 👍CleanShot X 3.1.1 破解版 (超强屏幕截图录像工具) (TNT + 免激活)

    软件语言为ENGLISH,英文不好的劝退! 软件介绍/功能 CleanShot X 3 是一款Mac超强截图以及屏幕录制工具.支持:区域截图.窗口截图.滚动截图.延时截图.屏幕录制.贴图.截图时隐藏桌 ...

  10. 第八十篇:Vue购物车(一) 购物车基本框架

    好家伙,又是购物车 来吧,这是参照黑马的课程写的一个购物车 目录结构如下: 1.首先组件导入, Counter.vue <template> <div class="num ...