欢迎关注公众号【Python开发实战】, 获取更多内容!

工具-numpy

numpy是使用Python进行数据科学的基础库。numpy以一个强大的N维数组对象为中心,它还包含有用的线性代数,傅里叶变换和随机数函数。

ndarray数据

导入numpy

import numpy as np

dtype

numpy的ndarray一定程度上也是高效的,因为他们的所有元素必须是同一类型,通常是数字。可以通过查看dtype属性,检查数据类型。

c = np.arange(1, 5)
print(c.dtype, c)
输出:int32 [1 2 3 4]

除了让numpy猜测具体使用哪种数据类型,还可以在创建数组时,设置dtype参数来明确指定数据类型。

d = np.arange(1, 5, dtype=np.complex64)
print(d.dtype, d)
输出:complex64 [1.+0.j 2.+0.j 3.+0.j 4.+0.j]

可用的数据类型有int8, int16, int32, int64, uint8|16|32|64,float16|32|64,complex64|128等

itemsize

itemsize属性返回每个元素的大小(字节)

e = np.arange(1, 5, dtype=np.int64)
e.itemsize

输出:

8

数据缓冲区

一个数组的数据,实际上作为一个平面(一维)字节缓冲区存储在内存中, 它可以通过data属性来获取,但很少用到它。

f = np.array([[1, 2], [1000, 2000]], dtype=np.int32)
f.data

输出:

<memory at 0x000000000531FC18>

多个ndarray可以共享同一个数据缓冲区,这就意味着修改一个ndarray也会修改其他的ndarray。

重塑ndarray

改变ndarray的形状和设置它的形状一样简单,但是ndarray的大小必须保持不变。

g = np.arange(24)
print(g)
print("秩:", g.ndim)
输出:[ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23]
秩: 1
g.shape = (6, 4)
print(g)
print("秩:", g.ndim)
输出:[[ 0  1  2  3]
[ 4 5 6 7]
[ 8 9 10 11]
[12 13 14 15]
[16 17 18 19]
[20 21 22 23]]
秩: 2
g.shape = (2, 3, 4)
print(g)
print("秩:", g.ndim)
输出:[[[ 0  1  2  3]
[ 4 5 6 7]
[ 8 9 10 11]] [[12 13 14 15]
[16 17 18 19]
[20 21 22 23]]]
秩: 3

reshape

reshape函数返回一个指向相同数据的新ndarray对象,这意味着修改一个ndarray也会修改另一个ndarray。

g2 = g.reshape(4, 6)
print(g2)
print("秩:", g2.ndim)
输出:[[ 0  1  2  3  4  5]
[ 6 7 8 9 10 11]
[12 13 14 15 16 17]
[18 19 20 21 22 23]]
秩: 2

将第1行,第2列的元素修改为999

g2[1, 2] = 999
g2

输出:

array([[  0,   1,   2,   3,   4,   5],
[ 6, 7, 999, 9, 10, 11],
[ 12, 13, 14, 15, 16, 17],
[ 18, 19, 20, 21, 22, 23]])

g的对应元素也被修改了

g

输出:

array([[[  0,   1,   2,   3],
[ 4, 5, 6, 7],
[999, 9, 10, 11]], [[ 12, 13, 14, 15],
[ 16, 17, 18, 19],
[ 20, 21, 22, 23]]])

ravel

ravel函数返回一个新的一维ndarray,也指向相同的数据

g3 = g.ravel()
g3

输出:

array([  0,   1,   2,   3,   4,   5,   6,   7, 999,   9,  10,  11,  12,
13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23])

将g3的第一个元素修改为1000,则g和g2的对应元素也被修改了

g3[0] = 1000
print(g3)
print(g2)
print(g)
输出:[1000    1    2    3    4    5    6    7  999    9   10   11   12   13
14 15 16 17 18 19 20 21 22 23] [[1000 1 2 3 4 5]
[ 6 7 999 9 10 11]
[ 12 13 14 15 16 17]
[ 18 19 20 21 22 23]] [[[1000 1 2 3]
[ 4 5 6 7]
[ 999 9 10 11]] [[ 12 13 14 15]
[ 16 17 18 19]
[ 20 21 22 23]]]

numpy教程02---ndarray数据和reshape重塑的更多相关文章

  1. numpy教程

    [转]CS231n课程笔记翻译:Python Numpy教程 原文链接:https://zhuanlan.zhihu.com/p/20878530 译者注:本文智能单元首发,翻译自斯坦福CS231n课 ...

  2. 【转】numpy教程

    [转载说明] 本来没有必要转载的,只是网上的版本排版不是太好,看的不舒服.所以转过来,重新排版,便于自己查看. 基础篇 NumPy的主要对象是同种元素的多维数组. 这是一个所有的元素都是一种类型.通过 ...

  3. 转:Numpy教程

    因为用到theano写函数的时候饱受数据结构困扰 于是上网找了一篇numpy教程(theano的数据类型是基于numpy的) 原文排版更好,阅读体验更佳: http://phddreamer.blog ...

  4. Python 机器学习库 NumPy 教程

    0 Numpy简单介绍 Numpy是Python的一个科学计算的库,提供了矩阵运算的功能,其一般与Scipy.matplotlib一起使用.其实,list已经提供了类似于矩阵的表示形式,不过numpy ...

  5. Python numpy 中常用的数据运算

    Numpy 精通面向数组编程和思维方式是成为Python科学计算大牛的一大关键步骤.——<利用Python进行数据分析> Numpy(Numerical Python)是Python科学计 ...

  6. NumPy 基于已有数据创建数组

    原文:Python Numpy 教程 章节 Numpy 介绍 Numpy 安装 NumPy ndarray NumPy 数据类型 NumPy 数组创建 NumPy 基于已有数据创建数组 NumPy 基 ...

  7. [译]Vulkan教程(02)概况

    [译]Vulkan教程(02)概况 这是我翻译(https://vulkan-tutorial.com)上的Vulkan教程的第2篇. This chapter will start off with ...

  8. 手把手教你学Numpy,从此处理数据不再慌「一」

    当当当,我又开新坑了,这次的专题是Python机器学习中一个非常重要的工具包,也就是大名鼎鼎的numpy. 所以今天的文章是Numpy专题的第一篇. 俗话说得好,机器学习要想玩的溜,你可以不会写Pyt ...

  9. NumPy 教程目录

    NumPy 教程目录 1 Lesson1--NumPy NumPy 安装 2 Lesson2--NumPy Ndarray 对象 3 Lesson3--NumPy 数据类型 4 Lesson4--Nu ...

随机推荐

  1. 堆优化Dijkstra算法

    但是,我们会发现刚刚讲的朴素Dijkstra算法(高情商:朴素 : 低情商: 低效)的套路不适用于稀疏图,很容易会爆时间: 所以,我们要对其中的一些操作进行优化,首先我们发现找到里起始点最近的点去更新 ...

  2. ybt1130:找第一个只出现一次的字符

    1130:找第一个只出现一次的字符 时间限制: 1000 ms         内存限制: 65536 KB提交数: 62333     通过数: 23786 [题目描述] 给定一个只包含小写字母的字 ...

  3. 说一下linux启动过程boot流程

    linux启动过程 https://www.ibm.com/developerworks/cn/linux/l-linuxboot/index.html http://www.ruanyifeng.c ...

  4. 由浅入深,带你用JavaScript实现响应式原理(Vue2、Vue3响应式原理)

    由浅入深,带你用JavaScript实现响应式原理 前言 为什么前端框架Vue能够做到响应式?当依赖数据发生变化时,会对页面进行自动更新,其原理还是在于对响应式数据的获取和设置进行了监听,一旦监听到数 ...

  5. java中会存在内存泄漏吗,请简单描述?

    所谓内存泄露就是指一个不再被程序使用的对象或变量一直被占据在内存中.java中有垃圾回收机制,它可以保证一对象不再被引用的时候,即对象编程了孤儿的时候,对象将自动被垃圾回收器从内存中清除掉.由于Jav ...

  6. Redis的持久化方案(三)

    Redis的所有数据都是保存到内存中的. Rdb:快照形式,定期把内存中当前时刻的数据保存到磁盘.Redis默认支持的持久化方案. aof形式:append only file.把所有对redis数据 ...

  7. 用TLS/SSL保证EMQ的网络传输安全

    作为基于现代密码学公钥算法的安全协议,TLS/SSL能在计算机通讯网络上保证传输安全,EMQ的MQTT broker支持TLS,也可以用这种方式来确保传输安全. 参考官网:https://www.em ...

  8. mac终端所有命令不能用

    最近一次在用终端敲命令的时候发现命令总是不执行(只有cd命令可以正常执行),返回命令未识别的错误-bash: source: command not found 相信很多朋友也会遇到类似的问题. 解决 ...

  9. jvm性能调优工具

    1.jstat 命令 jstat: 查看类装载,内存,垃圾收集,gc相关信息 命令参数 # jstat -option -t #option:参数选项,-t:显示系统的时间 # jstat -opti ...

  10. 剑指Offer30——包含min函数的栈

    剑指Offer30--包含min函数的栈 1. 题目简述 定义栈的数据结构,请在该类型中实现一个能够得到栈的最小元素的min函数在该栈中,调用min.push及pop的时间复杂度是O(1). 2. 题 ...