Deep Learning 2_深度学习UFLDL教程:矢量化编程(斯坦福大学深度学习教程)
1前言
本节主要是让人用矢量化编程代替效率比较低的for循环。
在前一节的Sparse Autoencoder练习中已经实现了矢量化编程,所以与前一节的区别只在于本节训练集是用MINIST数据集,而上一节训练集用的是从10张图片中随机选择的8*8的10000张小图块。综上,只需要在前一节的代码中稍微修改一下就可。
2练习步骤
1.下载数据集及UFLDL提供的加载数据集的函数,并把他们和上节程序放在同一文件夹中。要注意的是UFLDL提供的加载数据集的函数中程序用的数据集名称是train-images-idx3-ubyte,要把他改为train-images.idx3-ubyte。可用如下程序检查MINIST数据集是否可加载成功。
% Change the filenames if you've saved the files under different names
% On some platforms, the files might be saved as
% train-images.idx3-ubyte / train-labels.idx1-ubyte
images = loadMNISTImages('train-images.idx3-ubyte');
labels = loadMNISTLabels('train-labels.idx1-ubyte'); % We are using display_network from the autoencoder code
display_network(images(:,1:100)); % Show the first 100 images
disp(labels(1:10));
运行之后得到如下结果就表示已经可以正确加载:
2.矢量化Sparse Autoencoder程序,即上一节程序,因上节已实现,故此步骤可免去。
3.学习手写数字库的特征。
前言中已经说了,本步只需要在上节中稍微修改一下即可,具体如下:
①修改初始参数,把train.m文件中把step0里面的各个参数调整成这样:
visibleSize = 28*28; % number of input units 输入层单元数
hiddenSize = 196; % number of hidden units隐藏层单元数
sparsityParam = 0.1; % desired average activation of the hidden units.稀疏值
% (This was denoted by the Greek alphabet rho, which looks like a lower-case "p",
% in the lecture notes).
lambda = 3e-3; % weight decay parameter 权重衰减系数
beta = 3; % weight of sparsity penalty term稀疏值惩罚项的权重
②修改训练集,把step1里面的patches的产生改为:
%% STEP 1: Implement sampleIMAGES 第1步:实现图片采样
%
% 实现图片采样后,函数display_network从训练集中随机显示200张
% After implementing sampleIMAGES, the display_network command should
% display a random sample of 200 patches from the dataset
images = loadMNISTImages('train-images.idx3-ubyte');
patches = images(:,1:10000); % patches = sampleIMAGES;
display_network(patches(:,randi(size(patches,2),200,1)),8);%从10000张中随机选择200张显示 % Obtain random parameters theta初始化参数向量theta
theta = initializeParameters(hiddenSize, visibleSize);
4.其他一切不变,但是为了提高效率,可把train.m中的 STEP 3: Gradient Checking这步注释掉,因为在本例中训练集更大,梯度检查会比较慢。然后运行train.m可得到可视化结果为:
Elapsed time is 365.887537 seconds.
……
Deep Learning 2_深度学习UFLDL教程:矢量化编程(斯坦福大学深度学习教程)的更多相关文章
- Deep Learning 6_深度学习UFLDL教程:Softmax Regression_Exercise(斯坦福大学深度学习教程)
前言 练习内容:Exercise:Softmax Regression.完成MNIST手写数字数据库中手写数字的识别,即:用6万个已标注数据(即:6万张28*28的图像块(patches)),作训练数 ...
- Deep Learning 1_深度学习UFLDL教程:Sparse Autoencoder练习(斯坦福大学深度学习教程)
1前言 本人写技术博客的目的,其实是感觉好多东西,很长一段时间不动就会忘记了,为了加深学习记忆以及方便以后可能忘记后能很快回忆起自己曾经学过的东西. 首先,在网上找了一些资料,看见介绍说UFLDL很不 ...
- Deep Learning 19_深度学习UFLDL教程:Convolutional Neural Network_Exercise(斯坦福大学深度学习教程)
理论知识:Optimization: Stochastic Gradient Descent和Convolutional Neural Network CNN卷积神经网络推导和实现.Deep lear ...
- Deep Learning 13_深度学习UFLDL教程:Independent Component Analysis_Exercise(斯坦福大学深度学习教程)
前言 理论知识:UFLDL教程.Deep learning:三十三(ICA模型).Deep learning:三十九(ICA模型练习) 实验环境:win7, matlab2015b,16G内存,2T机 ...
- Deep Learning 12_深度学习UFLDL教程:Sparse Coding_exercise(斯坦福大学深度学习教程)
前言 理论知识:UFLDL教程.Deep learning:二十六(Sparse coding简单理解).Deep learning:二十七(Sparse coding中关于矩阵的范数求导).Deep ...
- Deep Learning 11_深度学习UFLDL教程:数据预处理(斯坦福大学深度学习教程)
理论知识:UFLDL数据预处理和http://www.cnblogs.com/tornadomeet/archive/2013/04/20/3033149.html 数据预处理是深度学习中非常重要的一 ...
- Deep Learning 10_深度学习UFLDL教程:Convolution and Pooling_exercise(斯坦福大学深度学习教程)
前言 理论知识:UFLDL教程和http://www.cnblogs.com/tornadomeet/archive/2013/04/09/3009830.html 实验环境:win7, matlab ...
- Deep Learning 9_深度学习UFLDL教程:linear decoder_exercise(斯坦福大学深度学习教程)
前言 实验内容:Exercise:Learning color features with Sparse Autoencoders.即:利用线性解码器,从100000张8*8的RGB图像块中提取颜色特 ...
- Deep Learning 8_深度学习UFLDL教程:Stacked Autocoders and Implement deep networks for digit classification_Exercise(斯坦福大学深度学习教程)
前言 1.理论知识:UFLDL教程.Deep learning:十六(deep networks) 2.实验环境:win7, matlab2015b,16G内存,2T硬盘 3.实验内容:Exercis ...
随机推荐
- 在VS2013中查看C/C++预处理后的文件
1.右键工程(例子中是myproject),选择[属性],在弹出的对话框中,选择[配置属性]-->[C/C++]-->[预处理器],将[预处理到文件]该为[是],应用,确认. 2.在VS ...
- ASP.NET MVC中从后台控制器(Controller)传递数据到前台页面视图(View)方式
方式一: 数据存储模型Model: public class CalendarEvent { public string id { get; set; } public DateTime start ...
- RDIFramework.NET ━ 9.11 数据字典管理 ━ Web部分
RDIFramework.NET ━ .NET快速信息化系统开发框架 9.11 数据字典管理 -Web部分 数据字典模块主要对框架所需数据字典(即选项数据)进行管理,整个数据字典数据为框架所共享, ...
- ubuntu15.04安装Chrome浏览器
首先到: https://dl.google.com/linux/direct/google-chrome-stable_current_amd64.deb 下载最新的安装文件. 然后: sudo a ...
- struts2数据校验与国际化
数据校验: Action里的validate()方法能校验action类所有的方法,如果有错,如:addFieldError,会自动返回到workflow校验拦截器不向下继续进行,不用return i ...
- Mvc请求管道中的19个事件
下面是请求管道中的19个事件. (1)BeginRequest: 开始处理请求 (2)AuthenticateRequest授权验证请求,获取用户授权信息 (3):PostAuthenticateRe ...
- win10查看连接过的wifi密码
cmd窗口 运行 “netsh wlan show profiles name="linasd" key=clear”
- tcp粘包,udp丢包
TCP是面向流的, 流, 要说明就像河水一样, 只要有水, 就会一直流向低处, 不会间断. TCP为了提高传输效率, 发送数据的时候, 并不是直接发送数据到网路, 而是先暂存到系统缓冲, 超过时间或者 ...
- TCP IP详解(转)
大学学习网络基础的时候老师讲过,网络由下往上分为物理层.数据链路层.网络层.传输层.会话层.表示层和应用层. 网络七层协议简称OSI.TCP/IP刨除了物理层,并把上三层(会话层.表示层和应用层)统称 ...
- mybatis代码生成(generator工具生成代码)
generator工具生成代码 下载地址 http://pan.baidu.com/s/1bY8C0I