http://poj.org/problem?id=1741 (题目链接)

题意

  给出一个n个节点的带权树,求树上距离不超过K的所有点对的个数。

solution  

  点分治裸题。所谓的点分治,就是对于一条路径,只有经过该点和不经过改点两种情况,所以我们可以通过找到树的重心,删去这个点,使树分成几棵小树,再递归处理。不经过的情况很好处理,直接递归到子树就可以了,关键是如何考虑经过的情况。

  对于这道题,我们可以处理处所有点到当前子树重心的距离deep[],然后对于当前子树的两个节点i,j只要满足deep[i]+deep[j]<=K,便符合条件,此时我们发现,这样算出的解是经过当前子树重心的情况,而当i,j都是重心的同一棵儿子节点子树上的点时,会重复计算,因为待会又会递归处理这一子树。所以我们还要减去这一部分的点对,方法同上,只是缩小了树的范围。接着递归处理出解。

  代码hzwer那里模来的,很多细节感觉处理的很优秀,我加了点注释。

代码

// poj1741
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#define MOD 1000000007
#define inf 2147483640
#define LL long long
#define free(a) freopen(a".in","r",stdin);freopen(a".out","w",stdout);
using namespace std;
inline int getint() {
int x=0,f=1;char ch=getchar();
while (ch>'9' || ch<'0') {if (ch=='-') f=-1;ch=getchar();}
while (ch>='0' && ch<='9') {x=x*10+ch-'0';ch=getchar();}
return x*f;
} const int maxn=10010;
struct edge {int to,w,next;}e[maxn<<2];
int head[maxn],vis[maxn],son[maxn],deep[maxn],f[maxn],d[maxn],n,cnt,root,sum,K,ans; void insert(int u,int v,int w) {
e[++cnt].to=v;e[cnt].next=head[u];head[u]=cnt;e[cnt].w=w;
e[++cnt].to=u;e[cnt].next=head[v];head[v]=cnt;e[cnt].w=w;
}
void init() {
cnt=ans=root=sum=0;
memset(head,0,sizeof(head));
memset(vis,0,sizeof(vis));
memset(deep,0,sizeof(deep));
for (int i=1;i<n;i++) {
int u=getint(),v=getint(),w=getint();
insert(u,v,w);
}
}
void calroot(int u,int fa) { //找重心
f[u]=0;son[u]=1;
for (int i=head[u];i;i=e[i].next) {
if (fa==e[i].to || vis[e[i].to]) continue;
calroot(e[i].to,u);
son[u]+=son[e[i].to];
f[u]=max(f[u],son[e[i].to]);
}
f[u]=max(f[u],sum-son[u]);
if (f[u]<f[root]) root=u;
}
void caldeep(int u,int fa) { //统计当前树中每个节点到重心的距离
deep[++deep[0]]=d[u];
for (int i=head[u];i;i=e[i].next) {
if (e[i].to==fa || vis[e[i].to]) continue;
d[e[i].to]=d[u]+e[i].w;
caldeep(e[i].to,u);
}
}
int cal(int u,int now) {
d[u]=now;deep[0]=0;
caldeep(u,0);
sort(deep+1,deep+deep[0]+1);
int t=0;
for (int l=1,r=deep[0];l<r;) { //这里统计答案的方法很优秀
if (deep[l]+deep[r]<=K) t+=r-l,l++;
else r--;
}
return t;
}
void work(int u) {
ans+=cal(u,0); //统计当前树中所有符合条件的点对
vis[u]=1;
for (int i=head[u];i;i=e[i].next) if (!vis[e[i].to]) {
ans-=cal(e[i].to,e[i].w); //减掉在同一棵子树中的符合条件的节点
sum=son[e[i].to];
root=0;
calroot(e[i].to,0);
work(root); //递归分治处理子树
}
}
int main() {
while (scanf("%d%d",&n,&K)!=EOF && n) {
init();
sum=n;f[0]=inf;
calroot(1,0);
work(root);
printf("%d\n",ans);
}
return 0;
}

  

【poj1741】 Tree的更多相关文章

  1. 【POJ1741】Tree(点分治)

    [POJ1741]Tree(点分治) 题面 Vjudge 题目大意: 求树中距离小于\(K\)的点对的数量 题解 完全不觉得点分治了.. 简直\(GG\),更别说动态点分治了... 于是来复习一下. ...

  2. 【poj1741】Tree 树的点分治

    题目描述 Give a tree with n vertices,each edge has a length(positive integer less than 1001). Define dis ...

  3. 【POJ1741】Tree 树分而治之 模板略?

    做广告: #include <stdio.h> int main() { puts("转载请注明出处[vmurder]谢谢"); puts("网址:blog. ...

  4. 【POJ1741】Tree

    题目大意:给定一棵 N 个节点的无根树,边有边权,统计树上边权和不大于 K 的路径数. 对于每条树上路径,对于每一个点来说,该路径只有经过该点和不经过该点两种情况,对于不经过该点的情况,可以转化成是否 ...

  5. 【POJ3237】Tree 树链剖分+线段树

    [POJ3237]Tree Description You are given a tree with N nodes. The tree's nodes are numbered 1 through ...

  6. 【BZOJ】【2631】Tree

    LCT 又一道名字叫做Tree的题目…… 看到删边加边什么的……又是动态树问题……果断再次搬出LCT. 这题比起上道[3282]tree的难点在于需要像线段树维护区间那样,进行树上路径的权值修改&am ...

  7. 【Luogu1501】Tree(Link-Cut Tree)

    [Luogu1501]Tree(Link-Cut Tree) 题面 洛谷 题解 \(LCT\)版子题 看到了顺手敲一下而已 注意一下,别乘爆了 #include<iostream> #in ...

  8. 【BZOJ3282】Tree (Link-Cut Tree)

    [BZOJ3282]Tree (Link-Cut Tree) 题面 BZOJ权限题呀,良心luogu上有 题解 Link-Cut Tree班子提 最近因为NOIP考炸了 学科也炸了 时间显然没有 以后 ...

  9. 【AtCoder3611】Tree MST(点分治,最小生成树)

    [AtCoder3611]Tree MST(点分治,最小生成树) 题面 AtCoder 洛谷 给定一棵\(n\)个节点的树,现有有一张完全图,两点\(x,y\)之间的边长为\(w[x]+w[y]+di ...

随机推荐

  1. Beta版本项目展示要求

    项目评审的定在1月5日上午9:00在新主楼D225进行. 在Beta阶段项目评审会上, 每个团队有12分钟展示时间,10分钟问答和机动时间,我们的展示也不需要PPT,大家把要展现的东西写成博客(可以有 ...

  2. PHP 对于 MYSQL 基础操作

    基础 <?php // 不打印 notice info // error_reporting(0); // 连接 mysql $con = mysql_connect("localho ...

  3. SQLServer(MSSQL)、MySQL、SQLite、Access相互迁移转换工具 DB2DB v1.4

    最近公司有一个项目,需要把原来的系统从 MSSQL 升迁到阿里云RDS(MySQL)上面.为便于测试,所以需要把原来系统的所有数据表以及测试数据转换到 MySQL 上面.在百度上找了很多方法,有通过微 ...

  4. jQuery操作单选按钮(radio)用法

    1.获取选中值,四种方法都可以: $('input:radio:checked').val():$("input[type='radio']:checked").val(); $( ...

  5. 浅析WPhone、Android的Back与Home键

    浅析WPhone.Android的Back与Home键 背景 本人一直在用诺基亚手机(目前是Nokia 925,Windows Phonre 8.1),在界面设计.应用多样性等方面没少受身边Andro ...

  6. SQLite剖析之功能特性

    SQLite是遵守ACID的轻型数据库引擎,它包含在一个相对较小的C库中.它是D.RichardHipp创建的公有领域项目.不像常见的客户端/服务器结构范例,SQLite引擎不是一个与程序通信的独立进 ...

  7. 【Spring】构建Springboot项目 实现restful风格接口

    项目代码如下: package hello; import org.springframework.boot.SpringApplication; import org.springframework ...

  8. git工作流程

    git工作流程 一般工作流程如下: 克隆 Git 资源作为工作目录. 在克隆的资源上添加或修改文件. 如果其他人修改了,你可以更新资源. 在提交前查看修改. 提交修改. 在修改完成后,如果发现错误,可 ...

  9. SpringMVC学习--springmvc原理

    简介 springmvc是spring框架的一个模块,springmvc和spring无需通过中间整合层进行整合.springmvc是一个基于mvc的web框架. spring的结构图: mvc在b/ ...

  10. Android M 控件:Snackbar、Toolbar、TabLayout、NavigationView

    Snackbar Snackbar提供了一个介于Toast和AlertDialog之间轻量级控件,它可以很方便的提供消息的提示和动作反馈.Snackbar的使用与Toast的使用基本相同: Snack ...