NYOJ之素数求和问题
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAsoAAAKCCAIAAABH/2gWAAAgAElEQVR4nO3dPVLjStsG4G8T5CyEdFgIlBMyNkDkBCJyEqq8AgJqJnX+BlNFMjWRswnPEvwF+uuWWlLL9IDxXFdR5wy2rD8L9a2n29b/7QEAivq/z14BAODUiBcAQGHiBQBQmHgBABQmXgAAhYkXAEBh4gUAUJh4AQAUJl4AAIWJFwBAYeIFHL3fD/fnZ7fnFz9+z07668e3s9vzs/vHX+Gjfx4vbs/Pbs+vf87O4PX6NlzW6/Xsq/48XuStW7CG3x7+ZE4OfE3iBRyVl+fzs9sFP3Xb/+fx4vbbw58oXrw8N63+z5uz2/Oz25uX+eWH8aKONYm8Ej5V/Ty/Zm1eE3Sq6Sc2ttquenP6T9UrmfjJXA3gbxMv4KgcFi/qV90/vrTxoo4U3x7+dM/+mlv6oHpRR5OL59df8QSZUWBYqGgmC1ZMvIDTI17A0cvpHPn9cH9+8fzaxouHH98u6kZ6UGmoKhltISH/5/7xVzu3+28XcXqYjhdNkuiWm96cOhVF8aKdsppJ11lTzyqnKgN8LPECjkwyDaR/whESo4EgHSMOjheN+uWDeNFOE0/QxYvq3/ePL39y40WysBEsQryA4yNewNGbrV5MxYu6nlH3GtSzGh+tOegcGfOOeDElr3ox0qtixCgcDfECjsi7KgpByOgebPsyqkeqaYJmuBkTuu/NJB7E8PIcjiGdzDEZ8WKkG+XmZZ9bvRAv4NiJF3CUwi6SuNX883gxKD+kG+xugGfTePd7E4JEUueJ9pGuzNC25dc/jyteBDuh2l3iBRwN8QKOTdSm9j4K0YsLvQefX0da7qbpraaMPkLSJYyLH78HvwZ1gkE9oxd98jtHRqZMxIsxcS/Jt4c/4gUcGfECjs50F0nis5e/H+6Dz3k2E7w8n1/8eLy+vbl+ruNCb4JW8w0ZvTEc3y7uo6gRaKf8dnFfP1s+XnRZql8peRAv4MiJF3DMwmpE3cYPO0fG40j0tVr1R0lHCgNxW37xfNPOczh9okbSFk4+NF60qUK8gCMjXsAxihJD2GqGYzKa/pHZeBGVJYaf3Uh8FPbix+/094u3c2u+96KpcHy7fi4/9qI1GGwRLCLr68KAjyVewHEZu2Sf6SuJPxIy+NRoO4Si180Rt/Q3L/EHU5OfJq1ecv2jW8TLc//7yIfr8J6hnV23zqCK0385cCTECzgy41+rFV+mV19O9evP71/xV4l335ndjbEI5tk+GDfPTWGg970X3QujQkj3bV0lhnaG0p8cqWskiY+TRJ+OUcmAoyFewHH69eNbGwWi9vjnzcgggziXJL8PI5Ukoia5aarDIkeXXZpUEXxCdfmXgk9vdhwvet9vUX3H+cuPm8QgktHdAnwG8QKOTVyK2O+jeBFliLB9nb0X2sWP1/a17WzjW6r2M0Hn502bDF5+PP7a/614EX/etenx+Zn/bWO6SOA4iBdwRKJmfnBbkLbM0OsOiF4VNOfPr4MhF4lvzYofH1QFxhT7UvBUZ1BXp5kqwyR+3DEVjoR4AUfl149vYw1q6nMTVeNdtdDJC/ffD/e9F75eF7nEH8SLaRPVi0HZI5jmz+P17N1PgCMkXgAAhYkXAEBh4gUAUJh4AQAUJl4AAIWJFwBAYeIFAFCYeAEAFCZeAACFiRd8Ndv15Wqza3/dbVbN79v1Zcpqs6sma6230a/to+E819v9brMKlxSuQTftP+CQ7R3bd/0ZT0zkLYOvTLzg+MQxod9cJNqkiWaqaW/q5qd5oP01mEX7e/Nkv61qpjmgrep973X0Ld3tjUV698tY+vhf87fixeBNGHn6c96ySvDGNV9V3r/92/nIbeHqx0ff+rH5xJsYrvd2Xf899IP0fJKDDydecHyCtDCXJWabjX68qF8wdSmceq45qR/aVr08B/fmCG8dHtyJ9F3//puytnekdNRvApM7Nz31J79l9Z1cwrvVV8Z2+8jjWW/9iDBebNfdBsexY7sWMDhC4gXHpx8vNuOdHm2zMWxg2seDeNFe3E5cCndLX3opvNus8s7zr9fNVezLc3jN2t1+bOnjvd13ud60+6PqMui1x1EamGt4c+NFuOnDLqwFJaf2NZ/5lv368W1RjMhLe91bvyhe7DarfqCIO4b0/XB0xAuOzyHVi167Mnh8t1lVbW6XRsYq7btdPZ+/FC9enttr4qCxaZ96fl3+eKQtoTerFP3SbEFw5b+eWeUD4kV//w7iRTXB1GiZT37Lfj/cJ3or9vt3xYvgrV8SLwbliSheBKOP4IiIFxyfwdiLqGUZjRcZ1Yv5Svt48X612byzI7+6bXrYaP21eBFVKQYN0cIGaXm8iFJN/UB/PG5ilvHLPvcte72+Pb+4D4ZNtPs5HjMxNpYirioN3/rp6buderlaDWsT/VimdMEREi84PonqRdAevaN60TU09a9RqzNogoqPE6z8+vGt6YD/pHjRtchZIWNpvKgXE1YGol2ZLBmEQwu6yT7vLXu9HgTBRDHj5006GYw8Hrz1WdNXhajVqr9rdI7wBYgXHJ9050jQUrwzXsTDBrv2tj5Dp6+Gg5bt3Z9ybAvvnxUv4u2cyxhL4kU103iIR/yB0e36crVajQ+padfpc9+y/q7+9eNbYpjnaB9Kmcebd68fyHqfKBn8DkdAvOD4HDj2IlU4j+JF8ERXDanrzKlxA/1RhcXiRXcp/NeGdmbEi/HHhjPM/+TIYF7NEIrqiWpec29r+8LPe8v67X00bGJ8srnHR6ogM/Fi34ttvTihfMExEi84PoOxF/1n56sXrUH1on247ddf9y79RtuqYA0WjhN8vQ4G8UUfSfgLH0zNGXuxDvfgXMt0yCdHeobFpbx48XlvWfwh0j+PF3Ux4/fDfde7EXR2jD0+9taPTd/fKb1KUBvSep8jkS44OuIFx+eQ6sXcvBJtVZBdohN03FbVJfxEOzcw0Va9PIdfoNTLBK/X6a/JWvp4t8lz1YswwGV9ueaRxIuPfMv2+2j0ZVslGnsrSz3e2ynDXbDa7HpDO31uhGMkXvBFBGfUuBM62WwMph5ezaZ6CQZjC6OJEl8f8U94R7zo3of+iMtwHGi6kfSWwVcmXgDT3j3WBPj3iBfANPECWEy8AAAKEy8AgMLECwCgMPECAChMvAAAChMvAIDCxAsAoDDxAv5J9ZdgZnynhVtaAMuJF/APCG9S0but/fCeZr07WiQtixu/fnybvb8GcFLEC/iX1NWKdILoAkedHnr3+Tj46ztfnrvbgb48SxjwDxAv4B+wXbd3dmtuuFkHhcSd7Jtbnk9I3aNz5u6jrT+PF6mbjwMnRbyAf0GdIurkkE4PTTQ4sHqRGy9+3pyJF3DyxAv4N3TJYr0NgsJI9aKNF+8ac5Hw++H+/Oz+8dc7ZwMcOfEC/hFhdSEzXhT368c3pQv4J4gX8K8IPiOSHNpZx4zdZnW53o5/fOTg6CFbwD9EvIB/RBUYqgwxVb2IPrMaPbddZw2uSJIt4N8iXsA/oYoKVWViMl7EmWK3WV2uNruccZsTk/gwKvxzxAv4BzSxIvpoarLfo1ex2G1Wub0i4/Hi9br7Tq3m5/m17BYCx0W8gNM3GKw5OnqzeqJLH73PpZb7BAlw2sQLAKAw8QIAKEy8AAAKEy8AgMLECwCgMPECAChMvAAAChMvAIDCxAsAoDDxAgAoTLwAAAoTLwCAwsQLAKAw8QIAKEy8AAAKEy8AgMLECwCgMPECAChMvAAAChMvAIDCxAsAoDDxAgAoTLwAAAoTLwCAwhbFi5fn87Pb8+ufze8/b85uz8+eX/v/rv1+uA8mHs7k5008PQBwEv5evKgmPru9eUnP5PX69vzs9vzs/vHXu7YAADgyh8WLXz++nVXhIP1TRYrfD/fng5JGmFF+P9yLFwBwcnLjRVWcaH4ufvzuHhztHNnv/zxe3N68/Pn98DyRRZq5AQCn4W+OvUhpYspwTAYAcCLeFS8mBNWOYPqmu6Qae6FbBABO0oHx4s/jRUZnR6ra8e3iPpjYJ0cA4PS8K15U5YegW6Qa8jkSL16vb8/Pnl97nxwx8AIATs0B8eLs9vzi+WZpvGj/PSiBfHv4U3qrAIBPlBkvwk+iHlC9qF/+/LqPM0cz2/53YwAAX9hHjL14roZ51lWKuMfk98O96gUAnJYPGnvx82Z0vCcAcGI+cGjnYCYAwEn6i/Ei6EARJgDgH7IkXlRfivXt4U/O2IvX6zZ/TE5saCcAnJrceNFGhOqLsMLqRaCrXvx5vb4XGgDgn7SocwQAYJ54AQAUJl4AAIWJFwBAYeIFAFCYeAEAFCZeAACFiRcAQGHiBQBQmHgBABQmXgAAhYkXAEBhufFiu74Mrdfx7/Wj29TrVpvdzJyjKXab1eXoa7qJt+vk8hbZbVbpmew2q2ox23X1fP//M7br9N44VSXejL90jG1TM8mZa3V4rLfV/5MLmD8ad5vV/MLTKz//l7Pc6AEfre5qs0vttYm/ySKHem8+1a/NiowtYXwv7Tar/otG38hsf+OM0Rxmuc/OHBiJc099FA5ftewYG5v6vWfLCal3bG6lZ/9sm4Oq+J8XfYuqF8GhPniP038ks8dv/2W7zepytV7nnM9HZlwdO8E8x/58d5vV5Wo1dr5tz27rbfdXkjhlzW9S/7nJ02VqPfI2Z2IGgz01thpLH4+nKNLI/IVjLHx9PWXW6rbnqd0uearKOBq7Jc6vU28u8W8l9u/4Ad++v8Gq5LdpZcJlOl4kJ8vcS4l1Tu7GTz5jTL61yXSRjthxCoyC7cjsp/9ycqJxfLwccract10HSSDjWBv9s+32UTuH4TbKHCW9N160D0X/yFEHzNVm1+bM4Nogdf3fLX7sknS9TUTT0UapjdijrWlv3v3HZyLQ6CLTS03L3JyJl/bXc2w1lv57uLQSf5rFj7GM+sXyee4zj8buAB/bNx8WL6YO+MESJ+NFTkFoybr293y7V98ZL/Ztezdqtdl9+Bkj40CrViW1XwYvHgu46W1YepBP7PmDtj1bVtExc2/GWxTtmN5emr8aYJHy8SI5+djsmj/v1Wa7WfUO613vkfavevSvv/vj3wSTJCaPAvFoFa1/VRP8eY0ehxPbvKC9CE5gOZuTfOHYxo2txtLHB8r8bRY+xvbhBiSrF+MV3Lw9PX00dhPPn8n/YryYPuCH7dhk50ip3pDhOg6rF8GKJBvSEnvpg88YqYJt7/c2XkSX3uvt6KS58SJe19ldNdPIR68/5GyZYXyTc18x9bR48Xflxov4DLTezp/6e3+CySpfe+LYblbJk9p6vY6uQavyRDvbVCNYn/ejRqVf+bxs+wrrZ4K6SbByq82mu7DZbdar8EIzeQRPp4vBEgaTNnsgruhNbc7oC4M1Ch8cW42lj6e38F1/nH/hGItXazZexPMLjpT+5mUfjRPrNTB3xXZgm553wPdb0On1DMqExVa0nm3/KEhMlrGXmqly/hg/+IxxcLxYrfqhJooX8T6YPuYmrvnHXzRdlz3gbJkjJ15k/dkmNrlpdyZnzjsUqF50lbzen2T0To0c7ru8/rntuhqRkXHt2pwBUo1S/WfQa7qD3/rVz+oPoz4y19umLRn9Q5toYSfb6fbYTwaOsc2ZfGEwwQfFi/cX8Pd/4xibr7MOrsKCFuTycrXZVf9abba79lIx82iMNmSRkevy3GJwUPefP+DD3bQelrWjWfZai90uOq2/I2D2GqHwVD/ePk1WL5qXjdZB418/6IzxjupFf1dEF1VxY556D4P0NDl+pNu4edVF4WFnyxy51YuMP9t2fqoXH+W98aI9dAY1p8vVZjd+jE61lMO/iO26PliCC4Cm4605oMM/i+gasnndsGEcPhK2WOlSfL1V4zF+ebyIT/OjL+ttztwLE1s0tRpHHC/edYyFsq/Pg1XZNCfLcDb5R2O7plMn6Hbtejv6gApIf3OzD/jterVaDVJT8nwbruh2s2o27r0n5vZ97N7+tunumogleynOQU1bM+jY+OAzxpJ4kTpQgiV2G5iMF8PnmqVNZIf+QTZWpklUEJaeLUcty9CJF6f+bOuVX62CZ8SLv+ud8aI+TId/g4O3PnH4hcf4ept4bycu4PrtTddyBGeA6unxE/NYU5n44wuC/7BGObbGkwtLXAil/x6mN2emCnwC8eI9x9ih56moKNSrtvaWNX00zgiPl+LxIrm49Ex2m9Vqs2n2d9QYpRuS5IeGp0/7k2uVOIh3m1XVFPSLS4fFi/b55LH0gWeMjGNyonrR7po6eIdXGq3ReJGsgYzv3eSqrreDEkr2ti/XPwInE8Dcn+12XQ+y2cRXBFkzZ7kD4kX3luw28fXOtvtg0qCdnT89ZsaL8C88nGlzmo/OANt0Gbt7duSZaG2j1ZhuOaa2crKOG8w9Pj1nbs7whcFyogfHVmPp43MbeKC/dIylk0fyyrzdjeFrtr2Ba1lH43o9V7Y4knjR35/pFrBrggf7LSpojAfQuZXrB4nL4R/hofGiegPb97U36488YyypXozEi8EG9g7V6g8oyBT9N2xp9SKdjlIH/pKzZYbBYZ9OAFl/tnFZp91N4sXfsyBeNMdVcNQ2HVzR+9f8M+/U3119Z1cvpmcanwGSlyvpScP5bre7xJ/RfK1g8gANFzd9Dg6eXbA5ydkOW9Gx1Vj678Sy8/42Zwog5Y+x/W6zXnUNZl0bThYsps77UYOXeTTO6DWAnxQvdpt11AkVPjM4nJMrEl9Gj6znTO6I39nLy+jTHO1SF+ylenn99rF7suti+MQzxtRROxMvxq4Ben/16XiRUb0YSZmbsIF+37bPRdHhqieqGZl/ttt1tbbh06PxYn7VyZAbL3oxNDg/Rxea44f0WOF68Hcde2+86F8ETU46ePLysi4Dt0X67vJnpCmdaQYWH7YLNmdsWYM/+/HVWPp4PEleuhjdQ3/hGEste2SXLFjRkSeXJ4D+dfOMv1a9aJ+djxfpt3msuerNa64pacJANE4hLlrk7qVqU7MqKcd6xuifEFOhru0Q7oes+A8pM14MW9touXGIjFbosG2fPiSSpY/5AsPMcTaIF7GoAJJ9TiNtUedIpf/XF7xFUdhuP6iUea5cUr3olvmeU+7YyWJ4cTv8E0nX1vvr+c9YsNE5TVG5Yyw+gQwPsNQx1DVhedeci47GuH3MPlD+audI+2zTlI9YbTaD4kF6z6ZnP1HWGJ1Hs3OzNj4ocoQFsMkjZIm/ccZYWL2IDug2SvX+VvpX7zPxIlV76HWvDN+hoA0+dNsnTgVje3oiXuT82apefKgD4gVzdpvpWzucnKyLxG7af2nXUPO+0+OQOHXiBQBQmHgBABQmXgAAhYkXAEBh4gUAUJh4AQAUJl4AAIWJFwBAYeIFAFCYeAEAFCZeAACFiRcAQGHiBQBQmHgBABQmXgAAhYkXAEBh4gUAUJh4AQAUJl4AAIWJFwBAYeIFAFCYeAEAFCZeAACFLYkXr9e352f3j796D/+8Obs9P7s9v/45+spfP74lXggAnKQF8eLP48Xt+dnza/zo74f78ypeDJ6q/frxbXoCAOCk5MaLpkTR/Hx7+LPf7/cvz+dnt+cXP16rkDFWwGgSRv0qAOCU5VcvXp7DfPD7158mNFS9HlVtYzRhNEUOXSQAcPKWxouL+/Oz25uXn48X9+dxPaP7ufjxO/H6mfwBAJyK7Hjx++H+/Oz+5rqKF/vfD/fpoPDyXE0w9HptBAYA/Auy48Xr9e352fPjQx0v6lEXzc/Nw49vZ/ePLz++jdYnutEbRmAAwElbNLSzGcLZxovuH7PxIoojChgAcMIO/OTI/ePDonhRD7y4eWn/UXYzAIDjsfBbO38f1jlST/z8uu8+y5oa/gkAnID3xYu86kVd+WgrFtUYTyMwAOBE/f14UX9gJCxXRF+YAQCcmPeNvZjvHAm7RQL1t2zpIgGAE1SqelF1fPyK40UzPiM1kNO3bAHAqfp78WIqW1QybrUKAHw974wX18/NnUSaakQ9oqI/nDOtudWZz6kCwAlZGC8AAOaIFwBAYeIFAFCYeAEAFCZeAACFiRcAQGHiBQBQmHgBABQmXgAAhYkXAEBh4gUAUJh4AQAUtihe7Dary9VmFz60XfcfOcBus7pcb/f77fpyaL0dW9Zus7qcX/r8GvanGLxit1lVD2zX1er0/7/IbrOKNut4bdeXyR0c7KDmn3N7ud2F0xbtm+l5NgfV3CyqafqHXvvKZjbtlOm1CLZ/2dESTp30/j8vgE+wIF5Up/74HDw4Jx7Qam7XWS/rNxe7zepytV4PAk+/qYt/6+Yy3Jz6XJ5sBaoHt+tqm+vnE01OtUPCR6tH2lXoR7R2NbL33Owi8uYxmDy5JolEGb0R3S/bdbAKY23l1MGSfEOmNmwyXoTvYmptmifroy/aIe2bvdrsog1MLa5Zi3C35B4t+0QYyd9EgCOWHS/qdiY6x+42q/U20QDl221WeQ1rfZ5tFha8brvuN1R58aI7d9dTVE8Nm6L1JtXurbeD9rDOJnHDWT8QXO33nuy1c/PmFpH16v7k42vSX6/x/TlVwphuJ0fKJMO3NlpK2DIPI9B6u2+O2k2i7NUrim3CLJGOFyNvUX/LkikpebRsw0fWa9UL4JTkxovoIqw+423XQaN5SLG/fdncRVoUBLaDAnqvpL4gXqTO5tvNpr+lzYz6rfqgHt62VeF17Lq9ru9FsYmWOrGrmienFzH92mBRE/1B8ZpEEw/y4HZ9uVqthu3hfP2i22PdS+KCw0ixYHgk9vrJwi6POvOl40W3xG1OvNjvd7vd9Jb1KiYzR8s+zkiqF8DpWDL2Yq7FOHQ4QdX8jdbGw+arChfJGsN6HdUzctcz1SWwXffblbq123R1gt1mvVoN41XVijRtSdsv3/7aSxeDPo7UtXq7zP38ImZeG2x0PzmNr0k3db2zBm/W/Duf2U62b93YHMOkkIp/9TCJ7ngZizpdD1lQwRqNF80sE9uQSIXZR8t+JF5kjRsBOGaHf3IkPrm3J8TxlNBTv3isb2VwMTc6tm7GxIV51OHT7/ZJdWhUK9U2sk35ZjjUsW2amg6Tpg2LU8xEoz4+JmNyETOvjTc8b03aX9vRLv3K0WgmmhNHmPaoqH5JHBWD93JiWMg2qu+Md46E7/509WIkIvWO1CVHS7fhbRgZ/0sB+Eo+t3oxMWogPmkPy/XjJ+Hh6b4/lLK5xA07NHb7/X633QZXnF3DkFiF5qF+7T0oKlyuVm2XTvLjFeONenrQQW+DkouYeW2wExbEi7bVrVvLiZEu42u8WScn6x0C6WOsK0L0kk1U04kD0Wgn1FjBIQprE/GiX7lZp3ZAztESF5dUL4CTsiBeDNvpd15WtVd3s/EibHSSL+m18BnxYp9XaFlvk01eWHpZhU11F1XiwafL4kW4zZNDGweLmHltsBOWx4vBv5M7OLWstq4V9l4N5pJa5SAspepZgx3RLjJ8B8c7R9rViipYOdWL7pfkEJ28oyV49W6zSlcwxAzgS8qPF7mN8VJ5JeeZlxwUL1LLTDeUiWp690u/oe4ak248RrJzZKrfJpwmbKLmFjHz2mBR0YPTaxKu98hQg/Te6fdybPsfehlM1B+uOXtIbcfGgMbTjFYvev0pg8GYw3ixXdfVr16HWFTeyDtagg3ertuQE6+5eAF8SQeNvWg64ZOXYQfMLC9edNe3JeNFOK/BhWfTrmy3uyBdTVUYUgmlbVRSrfpI25bYHfHo0ZFFzLw22AmDdmx0TaKpUyEomCAuUXT9DdG0s9WOrLAa912NzmfVG1YTb0Pwz+36MvERnF68WK2693LQI1aX4/KPln2vy0S8AE7GwngRXGkGl13vquNmxIv+dezs2IsFRZZUM5HSXHivm6vl7rI5bDGn2/7UONa5jozUmiyLF8nFJXbFyJrEK52usbTdE22/QnzJ3xth0byBiSVFb2XS7MDVQUVjPF6EI3HSg417+WOwCZfB9m7X0aTzR0uzf7ab8a+tFS+ALyk3XvTah32JsRep+WSFlenqxeziqjnPp5BmPda91ip1CZ4KDinTNYpjNDEOI5KODDMlhn30PkzuwHa6RUfdVJdeFXtSXwy3XYcf5egNvUiGoG47h701Y0dL87Va683o94OpXgBf1UGdIxwuN4cciS+2ugAcB/Hiw+UNWTwGOcMmAWBIvAAAChMvAIDCxAsAoDDxAgAoTLwAAAoTLwCAwsQLOHEz3y322asHnKRDvhQ85ysbsm4p3d6Sq/8NmoM7U3c37xrOIr5Xwy74BsTm2zmj/ydenliDwdk38f1S+V8VOr0PRr8PeuJeJpO37ugm/pAvCQ3WLbj7xuSuGf/K123qvu1595qbWNiXOczy7ki7bOnje7vIEQyQsihezN80NWhmwntGjrab3c0aottKJm6HPXImDL+pOZhpcwOIbj3SLcfgPJ1+NrHl6+3YDdCWyGz+E/dhu1yt1yNfqBmli9FWvLfGWQ317LoN7mgWLm1OdxuQ4Uqnd9SpHWYj6SL1vixYuuoF8Any48XsrS6jSdfbfdNSbCZuh93d3qE7yafP+yMtTPKGnIlWpv94d8eHaor11GVl3eJFTc9us0rdrWKBJZWgVX2f7+b/QRueui9Y+mI9bHQH95A5NF7E7XE0l4lr4+kb1rR3ApluE0/xMOu/T4MFtUdA1tJ3ybUfefMAClpyS7PECSxxLotq0d29prtZhTcV624wOX/e3+93u930hXDvUjbZtxCda7MuK6Orw7YukCrULNC+bO7WcM3z23XbWPULGf27freN7vj1/nZd3UqrneSweDGISNv15WoVHSPTvQKJ4yexiJFL8tM6zOKXtBGr92YPbv83ufT5euP0zgc41MKxF90ZrHdG7s57wRltvGXp1cFnzvvJe1S2C+6fsOs7ZWy66/PdZr1aJeNA8ryfatDmmsdDBzhUaWC8FQja6ua+3cNVWa+bTNG1OOQHfiMAACAASURBVMEYhlTpf9BdcEi8aG8T2lv/+fmMZKrhGx2HhuBdOsHDrB8vVqt+bSyMt/lLj3Zivy9LsAD+jmXxIrw+2oWdBYMqa3B+G72s7J7MuawcORX2rge70nb1RNsCNs3tsJgfnqdTDfxEV3xvg3KvFcMmPWObJoYcDl63Wq8HDeFYXGqK7xPFjintAJB+MWUwm7yhF8Eb1+2f3m7u762TOsyG1Yv+grtCzZKlT+5/8QL4O5Z0jmQ3nINLzolO8WCSqC9i7Lzfv1Bep7qPE4voZh5e/10G174fXL0YjH6IngrmN6gTjbUR2/Vgj7Vd9U0jNBxhUO+R5fFiu65nGr0sozu/HgcxNlk7h/4+7x9bp3aYpcZe7KNY1S+JzC59uGtUL4CPsah6EZ6mRqvW8VmyOoOPt8a7pt7fXlxmXVZ2v/TOkImFhaWCfrk56vZOXVpGvfaDlx2uveycjRfhFiVfMrxQbssRq2YIZBclgqY7aL6G3fyZhi+byReJcklvDMFgBrt2UHG3/qd4mCWrF9Hr6wcXLl31AvgES+JFePrb7XZhsTo5ZK02dVkZ/jto8fb70fP+dl3X9AfXsMF1Z7qpChun3iZt123rE69513s/55DRF3mV+JmXJONFuDP7Ozyur+9HO1UytyA1KCH9BlS7MX5Dhnuuf60dfq5iojH8+ofZeLzoT7ls6ZEDYyTAQkviRUYHyaCEsep9nnMfneCCf27X9RDFiWlXq1XX1gzqKHVBYLvdBWlgWAVIjaaLLmujDR6ciZsRB8mr06Wy40W38tnVi3iVx8ZedFOMJqR40uEWDJ4McuegcNJf/URoaLYneKo98vp766QOs9l40VV+8peek4x7/TjSB1DAos6RceHJcLuO24Hx837zr7CNCWsig4YhURnvrtS7dWiuitfNS7rX9pqz3WbVfCAjHZ96YyB6zU7wioPOyRnxolpq1tiL/h6beGiQGbaJb9AYf/Xcs7tmmEfbAxEXB3rjTpptCvtKoo/ChDkhagxP6jDrv7WD/TooU+QtPe/t3HWrp8MEeL93xYvgRJk+I01dOlWtTOqrqbbrcIx9r088uF4dLKfpgZ+5Pq6W2Hzf0XoTfGoweVnZawz3o7FgsXg+WWFlSfUiah0PNdVTM9NaDZc8WSapJ9muV8FgivFL+OGyvvZhNlK9iDYuCGBZSx//pEpPmHtUL4ACClUvOFXT6QIAUsQLAKAw8QIAKEy8AAAKEy8AgMLECwCgMPECAChMvAAAChMvAIDCFsWLxJdVDm9IkXFnktHvBlz6BdTv/ALj9rurE0+037DYfDd19P/kxINfInn7pf7y6vjrsQe7LPia6/Tuar97e/QuX+1KJW7jkb/t0dRJh96LZfmXR5Z5N4fznPh27eVHOMA/4r3xYv4OjJN3xBouYMnds8buKhmf2sdmuqtvXp1eYnu3jPW2W8xIcx7fwyujQe2mSq9cd3uL/rdE9+/wORKwwu+2HoSS/ka+Z9sHTffIdi4x33AnZlru3RzMNW8LZrNK6q1qN3Xsa84zHwc4NofFi9Er8cSpeCpe5NzOcfRuT4MXR+uWvF9VarUS65dcrfV28Hh8q49mbqPN0Xz9Irr15WqzCbNEOl6M7N9Bu569A/O3fRs+Ut1ZK2FpvJi6Hde4wu9m9Nr3x4uRG76G6/qefwMcodx4EZ2LgxtTN8ab1bkTYXgN2bsf10ifQ3uLqnC2UfRZb3o39uqtwHbdzx8jNy4dNvntrTTTmzsTLwY1jvhenb2S/TYnXuz3u91uOrpUbWnuDly07YWrF/XBMhE7RwJsyXczLka1R/tMzpirXgzWa+xWdEsfBzhG7+kcaX+dPNVt15dV1Xryqr67O2Q37GC92Y3Fi9Wq34bE8WIbt+X9vpLLaNLmwXAT6ptSbrpSyG6zXrUrkb6f5UyTmBkvojZtKl4k7+rZbWT0jizYgdnb3t/tE70wC429ecO4UvbdHKx9kAnmAsbSeNGP3c3vSx8HOEqHxIupJnV4Am5Oy4MxEfE0bR9Icshi8l7V0Qm9bZGa027bSsQteLiK8Rl6u74cVNirReyaG3Fv1yP31A63ZPR+6Qs6R6oX5VQvRgoE/cYuewcu3Pb66albfy8ffREWFnbhANV42X/n3Yx+izJBsID5t3Kw7eIF8E9ZGi/iiJBzigunqWYQ1KSzztGJannXtgZtd1D3CKvJTVs8XNnhI2EbkLgGrxvp0XSRKMwnr+TnS+3NZFWWqBc6ES96O2i9TnxoJHMH5m5708SWrF7kN9ubv/NuJkpd8ZNTAyxULwAaufEibEum2oDhCW9wGhw7L06Nik9efEfPJOLFvutDGC2aJJ9JbGDYFz/oV+jNL2pI6qXnRqnLsLsprGFkVS+iTpd+vMjbgQu3vXn1brNKVzAOaAHD9n5QWRifX4F3M9WnFG3vRMAQLwACB4+9GIwEHLsazzkNNj3obauaqAGMtI77/oPR8rbry9V6vTRe9NqZaOPGCw/R3HrjJ0bmHE+anmhQ80/Gi+267hAa9CNUjy3YgYu2PQong6NgrslNio6y3S7cPQfFi/wtGs5++N6MLmVpvEj0MkVFt+zHAY7RgfGiuxivrqgPOuu3Tycq2HE3yny86A0Kjar8o9fQo6u22253Qb2h16Ofmt9Y6hgU29erroxRJanh63qjRdbr/sx78aIdOBvupqY1agccZO7AZdsedTDkx4upgyKjg2SsfS/1bkZ7JXPsyOJ4Ea3we/4NcIQOrl40D/TqzUPjJ8Ltun9q71+SVfMfH3sRzSsYEtAvIh/QyDVtT/WFDm2fUNOK98cUTgzGmO4JSjfZl3UtIq7jp0YIDOJZP/Vt1wt34KJt321W1TdgjHSsjDT4B156H1i9WLRFgxXNixdTm9TbL4OjM7Gblj4OcGRy40XTPMUt1eAjBIlT8ZLrrNFzdPriO2ozD+vkH++tH46MHDxSXbAP5hE35c2T8aO9HdW0fk39pRoxMrjYDYY39IZeNHNPjefsdZtM78D8bW++Vmu9CT6cmle9WNZpErTOU019gXczmiDvuApWTpMP0FpUvYASDhqSAcAXIl4AAIWJFwBAYeIFAFCYeAEAFCZeAACFiRcAQGHiBQBQmHgBABQmXgAAhYkXAEBh4gUAUJh4AQAUJl4AAIWJFwBAYeIFAFCYeAEAFCZeAACFiRcAQGHiBQBQmHgBABQmXgAAhYkXAEBh4gUAUNiSePF6fXt+dv/4q/fwz5uz2/Oz2/Prn9Mv//1wf352e37x4/fSlQQAvpIF8eLP48Xt+dnza/xoHRrOEk/tk1OKFwBw4nLjRVOiaH6+PfzZ7/f7l+cqMbxW0SEuYLxeB1MO48WvH98yQgkA8NXkVy9enqOs8OtPkw+q7pKqthElDPECAP5JS+PFxf352e3Ny8/Hi/vzuJ7R/TQBQrwAgH9Sdrz4/XB/fnZ/c13Fi/3vh/v0WM6X52qCvXgBAP+o7Hjxen17fvb8+FDHi3rURfNz8/Dj29n948uPb0H/SBUv5n7ECwA4MYuGdjZDONt40f0jFS96fHIEAP4NB35y5P7xQbwAAJIWfmvn7/zOkXqCru9jGC/q3pO57+MCAL6U98WLqeqFeAEA/yjxAgAo7H1jL3SOAAADpaoXL/v9vvkqC/ECAP5pfz1eZPyIFwBwUt4ZL66f676SX809RxJ3bB+legEAp2hhvAAAmCNeAACFiRcAQGHiBQBQmHgBABQmXgAAhYkXAEBh4gUAUJh4AQAUJl4AAIWJFwBAYeIFAFCYeAEAFLYwXuw2q8vL9TZvwtnpdptVNc12fRlpX9nMpp0yMYvVZrddX642u+CBap7rbeL/iZcn1qDRzLaaojeDYLHxlk8YvmBiXgdq9lpyo3LeveH8Buu2Xc/Oa3qT+s/uNqvxvZM5z+FRl5j+Sx11WVvUe7r/vtRH5PBVy465samXbXu3khnvNvCFLYoXMy1ncMIIzyypc2jzZN1mR2eu6rXVQ93ZdeTk1pzbwtNwO4P1tluPdFMxODWmnw2en9gH7QTBik79FikXLxI56H2GTVz1yFzTF/8WT91/7W6zulyt16vhTsifZ7otTuyKL3PULdqi6C8wOkzHG/mZqDYn/uuY3fZuLaMkl54n8MXlx4u8q8tm0vW2fslqs0lcpnbnne26naR+In2iH2k2+w128qS43g4eX2220Ql4PXUdGTYH4dIKVy8SlsaE7OpSrt5q1df0YfM3vkPGo0D9sur42IVrPbz4zpxnf7fXazqy87/IUZe9RYMjMV09zIkMzaJSh8JI1Mrc9lRkGgZE8QJORG68qM+yE+en8PQRXfqlquC94uk250S/3+92u9F6cnxarKbqhZheHTv6ZeI6MlxifO4bixefVb0ISyzlztLRrhns/tV6vYpb7dko0Kzddt22t/1CRvxWZsaLXikiUSCpD8evcNQt2KLBbtmPxYvAeM9FNM2UfgrM2nbxAv4VC8dedCeNQa07OJnEjfF450hz9Tp3om9mmTjzJE6j2/XlZXVt2rxmt1mvht0c0XqHjyZPzVHBfOps+/ljL6ooOL4ey5YTlLzHmqR23WfaozZVtiuy3ayqufcnXK8vZ3b3cLdHjfFq1e9oCXs0vsJRl79F/Z1UXweMx4fZHr6U8SM0b9sTC20OgPQ2A1/asngRXpLswqFtg1NPcOIcrV50T+ZcR46ceXpN3jZslrpyy3q7Xaf6N3bNqLfNaCM26GSfkV+9mAkis2M9EusZNJ7T+ylbHCyCZixsF9NNwszYi0NXJ7d6se9t9OBwPfKjbskWxds2UmYMjpDx/o+wUyhDlQ0XbHuv/071Ak7Wks6R7EZuqp49dunXnU+nT/S98+Z6PTb+obeIbua9C76M68igin/Z6y0JT7Sp/TZ1vpzKLIelge34iPwD40W0u1ebzTrcXW170u3SXqObLooPksbIcbR0nom3I0hbgz1w5Efdki1Kxovhc81SJv6a+wdJnAaaLRhsfM621y9frVbdgsQLOFmLqhfhmWIQIaLzZHi2Gu8c2Qenu/ZqMus6svuld0JKLCy8rO/Xl6N+7tS15HrbzHN4JRnNZqz+m5LsXxrs6sVpoN/av3uGw1fH1YsD40X4HiVXuHec5caLkXeoeSZ48CscdYu2aKpzZBA9xg+G3uPJw7nfSbZo27fry/Vms6r+0+Q28QJO0pJ4Ef7t73a7sAw/1XhNVS/Cf3dV1u5VwxP9dl2344N+meBCs9f30v3Sv+yKTtRTPTz7yYfHR2ts6hYkNZ/y1Yt6rn8lXlxeXl6u10WqF3MrXDZe7AcPfo2jbsEW9TaoGjcyWNXohWOS1Yte+aM3afa2x4WVdkXFCzhJS+JFRgfJoISxir59qH1qeJ7frusBfRPTrlarbizEoI5Sn7y2213iFNitfb8A3RVwJ+NFO8/wo/2J1ewWFa3odj1Y9lHFi7iVjR8P9luR6kU04/X2g+JFsm/mmI+6BVuU+hMbqTOOzm34eLoWV1UftsF65m57ldHi40C8gJO1qHNkXHhe6nfOjseLqE8hrKj2uoqHs+1OZ3XvS1Sy7a6165d0rw0Xta9PZ9vufJnKS/3rt5GYFcxh9HwZn3BnulI+Ml5MJZ3w1duoetFf4Hz+7HqQolL/cMKwccyY5+hIhWgT2nrDFzjqlmxRInNN/P3tRw+GYVsfLbe/qYNAnbPtiXgx8s4DX9u74kVwZkyfFKYa0OrCLa7jtrMNuqR7neBBWWSwnPqkn3gucW3XfMFR1X+ROEu/t3MkWu2R5/569SIuN4yaW1wYLzZtbSao6OSt2AGdI7nzTF/rRwdg1zZ+iaMue4uGNYdoN8/Hi1Ttode9Mvwr34XxKGvbd/ELU2uregGno1D1gi/tfQMzAKBHvAAAChMvAIDCxAsAoDDxAgAoTLwAAAoTLwCAwsQLAKAw8QIAKEy8AAAKEy8AgMLECwCgMPECAChMvAAAChMvAIDCxAsAoDDxAgAoTLwAAAoTLwCAwsQLAKAw8QIAKEy8AAAKEy8AgMLECwCgsEXx4tePb2e35xc/fjcP/H64P7/+2fz25/HiNvi1eeTs+TVvhq/Xt+dn94+/ehP9vDm7PT/rzXk4n+ELAYBP8Z54Uf16dnvzst/v9/uX5/OzOB/U0z/fXNyenwU/bVCIZpjOIr8f7psXjsSUZjWmcgwA8HHeV72oI8XFj991OGiiRvDst4c/TQWibf7/PF7cnl/8+N3NsClRND/fHv6E83+tQsZYAaNJGPWrAIDPlBsv6vTQ/tw8tDWDwU/U2XF78zLMJcN4EWaR/X6///3rTxMaqnJIswIjCaMpcugiAYBPt6R6UTfhYfViv98n6xb7fVOxuH/8FRY5gpck48XF/fnZ7c3Lz8eL+3R2SaxAtBpTQzQAgI+wJF5U1YjceBEMxQjGT1RdGD+H8eL3w/352f3NdRUveoNG+7MdRJlg9YzAAIBPlh8v2hGUWfGi7Uy5f/xVNfzPr039IxkvqmkeH+p40aSTsC/m/vHlx7fR+kQ3esMIDAD4VNnxIq5APL8ORmPEozLbxv7+8dfPm6hEcXvzMjK0sxnC2caL7h+z8SKKIwoYAPCJcuNF8MmOKgT0BlIkqhf33y5uz8/uHx+ahv/6ZzPYc/aTI/WrsuNFuw5jA0EAgA+zKF5c3Pc/mLrfj429eH2pwsT9zfV9GyyiykdvaOd+v+/KGws7R+qJn1/3w2GkAMAHW/DB1KZ1z/3kSO9bOJv6RPslGRnxIq96Uc+5XYEqyhiBAQCfJHvsxevLz8TXau332fEibPVLxovE51miL8wAAD7Ygd/aOTquM/zsRhQv6ia/GnSZO/ZivnMk7BYJjHxFBwDwAd75peD7fV71op6m32GRX714CaZv40UzPiM1kNO3bAHAZ/mQeFH3Xwxb+l/9asSCeDGVLSoZt1oFAMr7gHhRdXMkB0wMRkj048V1+9Wf0fd0DYdzTq2wz6kCwIdaFC8AAOaJFwBAYeIFAFCYeAEAFCZeAACFiRcAQGHiBQBQWG68+B8AwP/+97///a9kvPgPAPjniRcAQGHiBQBQmHgBABQmXgAAhYkXAEBh4gUAUJh4AQAUJl4AAIWJFwBAYeIFAFDYR8eL73eXrauntw/YQgDgg31i9eL73eXl3fe/tWEAwGf5zM6R73cKGABwgj4vXrw9XSleAMAp+oR40Q6/ULoAgJP0yZ0j6hcAcHo+9YOpBl8AwCn6xHjx9nSlegEAJ+iD48Xb05XvvQCAE+dbOwGAwsQLAKAw8QIAKEy8AAAKEy8AgMLECwCgMPECAChMvAAAChMvAIDCxAsAoDDxAgAoTLwAAAr76HgR3dPMXc0A4BR9QrwQKQDgtIkXAEBh4gUAUNinjr0QNADgFH3mJ0e+30kYAHCCPvWDqd/vLi/vvv+dDQMAPssnxou3pyvpAgBO0AfHC0MvAOD0+dZOAKAw8QIAKEy8AAAKEy8AgMLECwCgMPECAChMvAAAChMvAIDCxAsAoDDxAgAoTLwAAAoTLwCAwj4lXlQ3Nsu8Wer3uyW3QOumXnTLtGqNMl4Q3ZPNXdkAIOXD48X3u8vLq6enu8x48f2ume7t6WpZa/49dxn/vT1dXd7d3WXGC5ECAKZ9/A3Z777/t6Tpj167OF/kTF/PN29q8QIAZn3S2ItD4sXC17w9XeVM3oYW8QIACvky8aLqVMlp2NvhF5ljNerJsuOFkRcAMO1rxIu3p6sDGvP5hYSRIrMrpTd/CQMABr5AvDgsW9RLmXxd+DGT1oLUc0gXDwCcvqOPF4eXCN6erpa0/ourFwvnDwD/jI+OF4OCwWzvxaLp3zE0IiteGHoBAPN8aycAUJh4AQAUJl4AAIWJFwBAYeIFAFCYeAEAFCZeAACFiRcAQGHiBQBQmHgBABQmXgAAhYkXAEBhHx8vwruUuSkYAJygD44Xb09XXaaIfgEATsUHx4vvd+Et1d+ermZusA4AfD0f3Tny9nTV9Il8v9M7AgCn6DOGdjajLxQuAOAkfXS8+H7X5orgnwDACfnYeNEbzGlsJwCcok8Y2tkFinigJwBwGj587MXb05XvvQCAk+ZbOwGAwsQLAKAw8QIAKEy8AAAKEy8AgMLECwCgMPECAChMvAAAChMvAIDCxAsAoDDxAgAoTLwAAAr7lHhR3dZseK/UsccXzef73eIbpiXm083lffOJnsmdUWI+0Z3gcuc0vZ/fMZ/e2uTOaOb9cos7gJPx4fGiuiX70+BW7GOPL5zP97vm97enq5zman65ebeNn5rP29PV5d3dXVbrOTKft6erZW3v2Pq8PV0tSXA570vWDkrPJ3qTMt8xAI7fB8eLt6eru+//DVuksceXzqc3zWxrlbXc7/PBYGo+9XpkzGViPgvjxeh8stYiYz4LZzk2n/j3t6erJckHgKP1SWMvxpqr3HiRM/2SeU1Mu6jNG86nDTmLGvb3xoux+Xy/q0sICzsjxvfPskiQ2q5mNar6huIFwCk42XixrLFKzacdFLCgzZuoFrw7XhwyRCFVLegeyN/bo1MurIYk59PsaIULgJNxmvEiuCZ+3/osXanepGHj+7540X8yc1bJ6sXb2K+L12fxaIlU/GoeiaMPAF/ZCcaLxdlidrn5ySCeT/ihiFbW5s2uz4FVh4n4c8D6LH23Bq/oxRNjOwFOxcnFi8N68OeGiB5Yveg9VaZ68a71CXfPgtZ8Yshq1nqMzSd+t5bHFQCO00fHi8EFfd2cjD2+cD7DesFh81k81GF+/fPixd9fn2BWh6/P4g+4Ts9nyZYB8AX41k4AoDDxAgAoTLwAAAoTLwCAwsQLAKAw8QIAKEy8AAAKEy8AgMLECwCgMPECAChMvAAAChMvAIDCPiVeVLex6t8Pq7vrlTtbAcBX9uHxoroF99PEjcIX3osTADgyHxwv3p6u7r7/V6WJMEHEdyt/e7pSwQCAL+uTxl704kX4a9Vzon4BAF/W0cSLq6e3OljU/xIvAOCLOpp4EQ3pFC8A4As7jnjRG81p7AUAfGXHES+iT44MnwQAvpKPjhfdl1vU2hzRDOk0qhMAvjjf2gkAFCZeAACFiRcAQGHiBQBQmHgBABQmXgAAhYkXAEBh4gUAUJh4AQAUJl4AAIWJFwBAYeIFAFDYx8eL7qZmg3uuV3c1y7yh2dh8Jua/YD7hrdfeM59atWVZM0rPJ7jhW+Yqze7nd8yntzZZM5p/v/J20Nh8lt0Sb2KpSw8gAIY+4Y6p9cn/7ekqPH9Xd2R/yr0X+9h8Rue/dH2iSebXaXI+b09Xl3d3d5mNeXI+b09Xixq70fV5e7packvanP2Zs4NG5jP+y+HzyXvjR1a/Ogzfmvm4eS/AYT6xc6TXJNx9/y+zKZ+YT87jS+fz3/esYDA6n/r3hXMZtp+HXktH81m8FiPzCSydZTif+P1+e7pa8O4H8+m9cOEaBZPHr1x6BAHQ+MR4kYoSh8SLsdcsndfI9MvavMF82iZqccMezecd8SKcz/e7ukR0QPU/vX8W757BdjWrERQOls6nt2qL1imcOJxP09mifgFwgE+LF+nGZHm8GGuUDmmsRgYFLG6E4z6f+rfll9SDPo1DUkE8n+93l72egNy9PbI/DwpNI4MdFoe4eLviXDA/s8T7W21Nva/rf4kXAAf4nHgRXLPGFsaLsfmMzn/p+ixcqf58wsZ3SUM8vz55sxrMp7cSues0tZ+X9hvFLwjyThx9lq5POFz1+7JU0L2/deKIhnSIFwAH+IR4MdV2LokXH5Mt6rXKmN9I29k3u3lZ65Oxl1Lz6b0ya8PG12dZGBzJBIvHOmTtn6WVkGp+vdGcxl4AHOrD48X0pXd+g/X3OkX68j5BMDufzErBX16f8OGs1nN8fZY1vuOdYekujuXrs2AmkWh/hrM/ZCAQAP/999+Hx4vh9XwwOG/BRf7YfEbnv3A+S4c6ZCw3K158wPoEszp8fZZ+bHNmPtkrlHH85Pf2pF+x7PszAEjyrZ0AQGHiBQBQmHgBABQmXgAAhYkXAEBh4gUAUJh4AQAUJl4AAIWJFwBAYeIFAFCYeAEAFFY4XgAA/K9gvAAAyCReAACFiRcAQGHiBQBQmHgBABQmXgAAhYkXAEBh4gUAUJh4AQAUJl4AAIWJFwBAYeIFAFCYeAEAFCZeAACFiRcAQGHiBQBQmHgBABQmXgAAhYkXAEBh4gUAUNiiePHrx7ez2/OLH7+bB34/3J9f/2x++/N4cRv82jxy9vyaN8PX69vzs/vHX72Jft6c3Z6f9eac8Pvh/jxePQDgM7wnXlS/nt3evOz3+/3+5fn8LM4H9fTPNxe352fBTxsUohmms0gdGs4mY0o4pXgBAJ/sfdWLOlJc/Phdh4MmagTPfnv401Qg2nzw5/Hi9vzix+9uhk2Jovn59vAnnP9rFR3iAsbrdTDlMF7U6WcmlAAApeXGizo9tD83D3XpIvETdXbc3rwMc8kwXoRZZL/f73//+tPkg6oc0qxAkDDECwA4SkuqFyO9D6m6xX7fVCzuH3+FRY7gJcl4cXF/fnZ78/Lz8eI+nV0G8UW8AIAjsyReVM15brwIhmIE4yeqQPBzGC9+P9yfn93fXFfxojdotD/balniBQAcpfx40QzkzIsXbWfK/eOvKgc8vzYJIBkvqmkeH+p40aSTsC/m/vHlx7egf6SOOzM/4gUAfLDseBFXIJ5fB6Mx4lGZ7VDN+8dfP2+iEsXtzcvI0M5mCGcbL7p/pOJFeg19cgQAPlluvAg+2VGFgN5AikT14v7bxe352f3jQ1OHuP7ZDPac/eRI/SrxAgC+oEXx4uK+/8HU/X5s7MXrSxUm7m+u79tgEVU+ekM79/t9V97I6BypJ+j6Pobxol7o3PdxAQBFLfhgatO6535ypPctnE19ov2SjIx4MVW9EC8A4Ehlj714ffmZ+Fqt/T47XoQf9BAvMKAC/QAAA3BJREFUAOCEHfitnaPjOoPRnXG8iD4mmjv2QucIAHxB7/xS8P0+r3pRT9N+R8XYDEerFy/B9OIFABy1D4kXo838r/4nQZbHi4wf8QIAPtQHxIuqmyN1N7L2e7da/Xhx3X71Z/Q9XZlULwDgMyyKFwAA88QLAKAw8QIAKEy8AAAKEy8AgMLECwCgMPECACgsN178DwDgf//73//+VzJe/AcA/PPECwCgMPECAChMvAAAChMvAIDCxAsAoDDxAgAoTLwAAAoTLwCAwsQLAKAw8QIAKOxT4sXb09Xl5eXd9/jR73eXtaunt/JbCgB8kA+PF9/vLi+vnp7uevGievjtv//q8NHPHgDAl/HB8eLt6eru+39VmggTxPe7sGTx9nSlggEAX9Ynjb3oxYvw16rnRP0CAL6so4kXV09vdbCo/yVeAMAXdTTxIhrSKV4AwBd2HPGiN5rT2AsA+MqOI15EnxwZPgkAfCUfHS+6L7eotTmiGdJpVCcAfHG+tRMAKEy8AAAKEy8AgMLECwCgMPECAChMvAAAChMvAIDCxAsAoDDxAgAoTLwAAAoTLwCAwsQLAKCwT4oX1f3L+jddrx51QzMA+No+JV68PV1d3t3dRfGiuiP7k3uxA8CX9wnx4u3p6vLq6e17GC/enq7uvv9XhQzxAgC+tg+PF3W4+O+/73eDzhHxAgBOwUfHiy5UiBcAcKI+Nl6EkUK8AIAT9aHx4vvd5VCUJsQLAPj6Pu97L1QvAOBEHUu8GBQ2hAwA+Kp8aycAUJh4AQAUJl4AAIWJFwBAYeIFAFCYeAEAFCZeAACFiRcAQGHiBQBQmHgBABQmXgAAhYkXAEBhHx0v3p6uwhuXJW9qNryRKgDwhXxCvEimh+93zT1S356uBAwA+MqOJV7Ek8gXAPCFHWG8+H532VQyAIAv6FPHXqSCxvc7gy8A4Gv7zE+ODJPE29OVcAEAX92nfjA17gaRLQDgNHxivHh7ugrShU4RADgVHxwvxoZedF960TC4EwC+Kt/aCQAUJl4AAIWJFwBAYeIFAFCYeAEAFCZeAACFiRcAQGHiBQBQmHgBABQmXgAAhYkXAEBhheMFAMD/CsYLAIBM4gUAUJh4AQAUJl4AAIWJFwBAYeIFAFCYeAEAFCZeAACFiRcAQGHiBQBQmHgBABQmXgAAhf0/xzaQaHATnMUAAAAASUVORK5CYII=" alt="" />
----------------------------------------------
这道题有坑,虽然明确说<1000,但是实际上是<=1000。
AC代码:
import java.util.Scanner; public class Main { public static void main(String[] args) { preprocess(); Scanner sc=new Scanner(System.in); int times=sc.nextInt();
while(times-->0){
int n=sc.nextInt();
int ans=0;
while(n-->0){
int t=sc.nextInt();
if(prime[t]) ans+=t;
}
System.out.println(ans);
}
} private static boolean prime[]=new boolean[1001]; public static void preprocess(){
for(int i=2;i<prime.length;i++){
prime[i]=true;
}
for(int i=2;i<prime.length;i++){
if(prime[i]){
for(int j=i*2;j<prime.length;j+=i){
prime[j]=false;
}
}
}
} }
题目来源: http://acm.nyist.net/JudgeOnline/problem.php?pid=22
素数求和问题
NYOJ之素数求和问题的更多相关文章
- C语言 · 素数求和
算法提高 素数求和 时间限制:1.0s 内存限制:256.0MB 问题描述 输入一个自然数n,求小于等于n的素数之和 样例输入 2 样例输出 2 数据规模和约定 测试样例保证 2 & ...
- 南阳ACM 题目22:素数求和问题
素数求和问题 时间限制:3000 ms | 内存限制:65535 KB 难度:2 描述 现在给你N个数(0<N<1000),现在要求你写出一个程序,找出这N个数中的所有素数,并求和. ...
- NYOJ 24 素数的距离问题
素数的距离问题 时间限制:3000 ms | 内存限制:65535 KB 难度:2 描写叙述 如今给出你一些数.要求你写出一个程序,输出这些整数相邻近期的素数,并输出其相距长度.假设左右有等距离长 ...
- nyoj 22-素数求和问题(打表)
22-素数求和问题 内存限制:64MB 时间限制:3000ms Special Judge: No accepted:41 submit:52 题目描述: 现在给你N个数(0<N<1000 ...
- python 四位玫瑰数 + 100以内素数求和
四位玫瑰数 描述 ...
- 能不能用javascript实现素数求和问题呢?
先自己试试吧 好吧,下面这段代码用了别人所说的最笨的方法,身为小白的我只能呵呵.待会再尝试用其他算法. <!DOCTYPE html> <html lang="en&quo ...
- nyoj 24 素数距离问题
素数距离问题 时间限制:3000 ms | 内存限制:65535 KB 难度:2 描述 现在给出你一些数,要求你写出一个程序,输出这些整数相邻最近的素数,并输出其相距长度. ...
- Problem P: 素数求和
#include<stdio.h> int main() { ; scanf("%d",&n); n>=&&n<=; ;i<= ...
- nyoj 72-Financial Management (求和 ÷ 12.0)
72-Financial Management 内存限制:64MB 时间限制:3000ms 特判: No 通过数:7 提交数:12 难度:1 题目描述: Larry graduated this ye ...
随机推荐
- go outside @ CULTS LYRICS
I really want to go out I really want to go outside and stop to see your day You really want to hole ...
- 转载自安卓巴士 【收藏】2015必须推荐的Android框架,猿必读系列!
一.Guava Google的基于java1.6的类库集合的扩展项目,包括collections, caching, primitives support, concurrency libraries ...
- cocos2dx中CC_CALLBACK_1等宏中this指针实际指向
首先看代码,我在Helloworld中添加两个函数. void HelloWorld::addTarget(){ Size visibleSize = Director::getInstance()- ...
- css3常用标签
30个最常用css选择器解析 你也许已经掌握了id.class.后台选择器这些基本的css选择器.但这远远不是css的全部.下面向大家系统的解析css中30个最常用的选择器,包括我们最头痛的浏览器 ...
- AMD正式公布第七代桌面级APU AM4新接口
导读 本月5日,AMD正式公布了入门级的第七代桌面级APU为Bristol Ridge,在性能和能效方面较上一代产品拥有显著提升.AMD同时确认Zen处理器和新APU(Bristol Ridge)都将 ...
- UNTIY3D接入91SDK的办法
原地址: http://bbs.18183.com/thread-111324-1-1.html UNITY3D接入Android-SDK 方法一:把UNITY3D游戏打成安卓项目文件,修改安卓项目文 ...
- dp重拾-完全背包--HDU 4508
减肥记 湫湫给了你每日食物清单,上面描述了当天她想吃的每种食物能带给她的幸福程度,以及会增加的卡路里量. Input 输入包含多组测试用例. 每组数据以一个整数n开始,表示每天的食物清单有n种食物. ...
- NET-SNMP开发——日志输出
NET-SNMP开发——日志输出 net-snmp的日志输出功能是很强大的,与日志输出相关函数声明在net-snmp-5.7.3\include\net-snmp\library\snmp_loggi ...
- Java Log4j日志使用
在程序中使用log4j 1.导入包import org.apache.log4j.Logger;import org.apache.log4j.PropertyConfigurator; 2.获取lo ...
- 数论v2
#include <cmath> #include <cstdio> #include <cstring> #include <algorithm> # ...