加州大学伯克利分校Stat2.2x Probability 概率初步学习笔记: Section 3 The law of averages, and expected values
Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授。
Summary
- Law of Large Numbers As the number of trials increases, the chance that the proportion of successes is in the range $$p\pm\text{a fixed amount}$$ goes to $1$.
- Expected value of the Binomial If a random variable $X$ has the binomial distribution with parameters $n$ and $p$, then $$E(x)=n\cdot p$$
PRACTICE
PROBLEM 1
In each pair of events below, pick the one that has the higher chance.
1a)
A: 50,000 heads in 100,000 tosses of a coin
B: 500,000 heads in 1,000,000 tosses of a coin
1b)
A: In 60 rolls of a die, the number of times “six” shows up is in the range 10 plus or minus 3
B: In 600 rolls of a die, the number of times “six” shows up is in the range 100 plus or minus 3
1c)
A: In 1000 draws by a random number generator, the percent of times “0” shows up is in the range 10% plus or minus 1%
B: In 10,000 draws by a random number generator, the percent of times “0” shows up is in the range 10% plus or minus 1%
1d)
A: In 1000 draws by a random number generator, the percent of times “0” appears is less than 11%
B: In 10,000 draws by a random number generator, the percent of times “0” appears is less than 11%
Solution
1a) A. The chance of getting exactly half heads goes down (i.e. goes to 0) with more tosses. For example:
dbinom(x = 50000, size = 100000, prob = 0.5)
[1] 0.002523126
dbinom(x = 500000, size = 1000000, prob = 0.5)
[1] 0.0007978844
1b) A. The chance that the number of successes falls in the range “most likely value plus or minus a fixed amount” goes down with more rolls. For example:
sum(dbinom(x = 7:13, size = 60, prob = 1/6))
[1] 0.7767122
sum(dbinom(x = 97:103, size = 600, prob = 1/6))
[1] 0.2985048
1c) B. This follows the "Law of Large Numbers".
sum(dbinom(x = 90:110, size = 1000, prob = 1/10))
[1] 0.7318197
sum(dbinom(x = 900:1100, size = 10000, prob = 1/10))
[1] 0.9991879
1d) B. “less than $11\%$” includes $10\%$, which is where the percent of 0’s is going as the number of draws increases. More formally, the chance that the percent of 0’s exceeds the actual probability (i.e. $0.1$) plus any fixed amount (e.g. $0.01$) gets smaller as the number of draws increases. So the probability of the complement gets larger.
PROBLEM 2
My friend and I gamble on a roll of a die as follows: if the die shows 1 spot or 6 spots, I give my friend $\$2$. If the die show 2, 3, 4, or 5 spots, my friend gives me $\$1$. Suppose we play this game 100 times. What is my expected net gain?
Solution
$P(\text{lose})=\frac{1}{3},\ P(\text{win})=\frac{2}{3}$. Therefore $$E=\frac{1}{3}\times(-2)+\frac{2}{3}\times1=0$$
PROBLEM 3
A die is rolled 600 times. The “multiples of 3” are the faces with 3 spots and 6 spots. Find the expected value of:
a) the proportion of times multiples of 3 appear
b) the number of times multiples of 3 appear
Solution
3a) $$P(\text{multiples of 3 appear})=\frac{2}{6}=\frac{1}{3}$$
3b) Binomial distribution, $$E=np=600\times\frac{1}{3}=200$$
PROBLEM 4
If you bet on a “split” in roulette, your chance of winning is 2/38. The bets pays 17 to 1; this means that if you bet \$1 on a split and win the bet, your net gain is \$17; if you lose the bet, you lose your dollar and so your net gain is -\$1. Suppose you place 200 bets on a split; assume your bets are independent of each other. Find your expected net gain.
Solution
The expected value of the proportion of the net gain is $$E_p=\frac{2}{38}\times 17+\frac{36}{38}\times(-1)=-\frac{1}{19}$$ Hence the expected value of the net gain is $$E=200\times(-\frac{1}{19})\doteq-10.52632$$ In other words you expect to come out losing about \$10.53.
EXERCISE SET 3
PROBLEM 1
In a roll of a die, let a "six" be the face with six spots. Consider the two events below.
Event A: more than 16,000 sixes in 100,000 rolls
Event B: more than 160,000 sixes in 1,000,000 rolls.
Which probability is larger?
Solution
According to the Law of Large Numbers, $P(A) < P(B)$. Alternatively, we can test it using smaller examples: $$P(\text{more than 160 sixes in 1000 rolls})$$ $$=\sum_{k=161}^{1000}C_{1000}^{k}\cdot(\frac{1}{6})^k\cdot(\frac{5}{6})^{1000-k}\doteq0.6971976$$ And $$P(\text{more than 1600 sixes in 10000 rolls})$$ $$=\sum_{k=1601}^{10000}C_{10000}^{k}\cdot(\frac{1}{6})^k\cdot(\frac{5}{6})^{10000-k}\doteq0.9626252$$ R code:
sum(dbinom(161:1000, 1000, 1/6))
[1] 0.6971976
sum(dbinom(1601:10000, 10000, 1/6))
[1] 0.9626252
PROBLEM 2
In the bet on a “single number” at roulette, there is chance 1/38 of winning. The bet pays 35 to 1; you can take this to mean that if you win the bet, your net gain is $\$35$, and if you lose the bet then you lose $\$1$ (that is, your net gain is $-\$1$).
You don’t need to know any more about roulette to solve this problem, but the description given above is what would happen if you were to bet $\$1$ on a single number at a Las Vegas roulette table.
Suppose you bet repeatedly on a single number; assume that the bets are independent of each other. Find the expected value of your net gain from 38 bets.
Solution
$$E=38\times(\frac{1}{38}\times35+\frac{37}{38}\times(-1))=38\times(-\frac{2}{38})=-2$$
PROBLEM 3
400 draws are made at random with replacement from 5 tickets that are marked -2, -1, 0, 1, and 2 respectively. Find the expected value of:
3A the number of times positive numbers appear
3B the sum of all the numbers drawn
3C the sum of the positive numbers drawn
Solution
3A) $$E(\text{number of times positive numbers appear})=400\times\frac{2}{5}=160$$
3B) $$E(\text{sum of all the numbers drawn})=0$$
3C) $$E(\text{sum of the positive numbers drawn})$$ $$=400\times(1\times\frac{1}{5}+2\times\frac{1}{5})=400\times\frac{3}{5}=240$$
加州大学伯克利分校Stat2.2x Probability 概率初步学习笔记: Section 3 The law of averages, and expected values的更多相关文章
- 加州大学伯克利分校Stat2.2x Probability 概率初步学习笔记: Section 5 The accuracy of simple random samples
Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...
- 加州大学伯克利分校Stat2.2x Probability 概率初步学习笔记: Section 4 The Central Limit Theorem
Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...
- 加州大学伯克利分校Stat2.2x Probability 概率初步学习笔记: Section 2 Random sampling with and without replacement
Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...
- 加州大学伯克利分校Stat2.2x Probability 概率初步学习笔记: Section 1 The Two Fundamental Rules (1.5-1.6)
Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...
- 加州大学伯克利分校Stat2.2x Probability 概率初步学习笔记: Final
Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...
- 加州大学伯克利分校Stat2.2x Probability 概率初步学习笔记: Midterm
Stat2.2x Probability(概率)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...
- 加州大学伯克利分校Stat2.3x Inference 统计推断学习笔记: FINAL
Stat2.3x Inference(统计推断)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...
- 加州大学伯克利分校Stat2.3x Inference 统计推断学习笔记: Section 2 Testing Statistical Hypotheses
Stat2.3x Inference(统计推断)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...
- 加州大学伯克利分校Stat2.3x Inference 统计推断学习笔记: Section 1 Estimating unknown parameters
Stat2.3x Inference(统计推断)课程由加州大学伯克利分校(University of California, Berkeley)于2014年在edX平台讲授. PDF笔记下载(Acad ...
随机推荐
- 金山快盘+TortoiseSVN构建版本控制仓库
金山会盘+TortoiseSVN构建版本控制仓库 之前写过一篇文章介绍 如何利用花生壳和VisualSVN Server建立远程代码仓库,具体请参照: <如何利用花生壳和VisualSVN Se ...
- Oracle 数据库日常巡检
1. 检查数据库基本状况 包含:检查Oracle实例状态,检查Oracle服务进程,检查Oracle监听进程,共三个部分. 1.1. 检查Oracle实例状态 select instance_name ...
- Android开发之Fragment
一.Fragment生命周期: 二.动态添加Fragment的三步: 1.获得Fragment的管理者FragmentManager FragmentManager fragmentManager = ...
- optiontransferselect例子
Struts2 OptionTransferSelect标签 动态赋值: 1.html片面: <td class="td2"> <s:optiontransfer ...
- oracle 学习笔记
--2.2 进入和退出oracle数据库--在windows中输入cmd打开命令窗口 然后输入 sqlplu / as sysdba--验证数据库是否安装成功 --select status from ...
- chgrp 简明笔记
改变与文件相关联的组 chgrp [options] group file-list 参数 group 为新组的名称或者数值ID,file-list 为要改变其相关联组的文件路径名列表 选项 -c ...
- 关于cmd下使用taskkill无法终止进程名包含空格的进程的解决方案
在我们使用taskkill命令终止进程时,有时会遇到无法终止含空格的进程的问题.只要在进程名外部加上双引号即可解决此问题. 如图所示: 附上taskkill命令的语法及相关说明: TASKKILL [ ...
- MyBatis学习--延迟加载
简介 在resultMap可以实现高级映射(使用association.collection实现一对一及一对多映射),association.collection具备延迟加载功能.例如:我们查询订单并 ...
- QMenu,contextmenuevent,窗体透明
void MainWindow::contextMenuEvent(QContextMenuEvent *event) { QMenu *menu=newQMenu; menu->addActi ...
- [转]div与span区别及用法
DIV与SPAN区别及div与san用法篇 接下来了解在div+css开发的时候在html网页制作,特别是标签运用中div和span的区别及用法.新手在使用web标准(div css)开发网页的时候, ...