题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2342

思路:先跑一遍Manacher求出p[i]为每个位置为中心的回文半径,因为双倍回文串的长度一定是4的倍数,即偶数,那么对于Manacher的回文中心一定是'#'字符。所以我们枚举每个'#',对于每个'#'当回文半径大于等于4才有可能成为双倍回文。如果当前位置的i是'#'且满足以上条件。那么我们就找到i右边的j。因为双倍回文的长度是4的倍数,那么i右边的j的回文长度一定是2的倍数,即偶数,所以对于j我们只需要枚举等于'#'的j,然后如果p[j]>j-i即说明了存在一个长度为(j-i)*2的双倍回文串。因为i是双倍回文的中心,j又是i右边回文串的中心,所以j的枚举范围是[i,i+(p[i]/2)]. 注意暴力判断j时需要j从大到小判断,当找到第一个满足双倍回文的j时就要跳出枚举。因为此时的j肯定是最长的。不然会TLE。

#define _CRT_SECURE_NO_DEPRECATE
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<cmath>
#include<algorithm>
using namespace std;
const int MAXN = + ;
typedef long long int LL;
#define INF 0x3f3f3f3f
char str[MAXN], dstr[MAXN * ];
int lenstr, lendstr, p[MAXN * ], ans;
void manacher(){
memset(p, , sizeof(p));
int id = , mx = ;
for (int i = ; i<lendstr; i++){
if (mx>i){
p[i] = min(p[ * id - i], mx - i);
}
else{
p[i] = ;
}
while (dstr[i - p[i]] == dstr[i + p[i]]){ //暴力匹配
p[i]++;
}
if (p[i] + i>mx){
mx = p[i] + i;
id = i;
}
}
}
void init(){
dstr[] = '$';
dstr[] = '#';
for (int i = ; i<lenstr; i++){
dstr[i * + ] = str[i];
dstr[i * + ] = '#';
}
lendstr = lenstr * + ;
dstr[lendstr] = '*';
}
int main()
{
int n;
while (~scanf("%d", &n)){
scanf("%s", str);
lenstr = n;
init();
manacher();
ans = ;
for (int i = ; i < lendstr; i++){//实际回文长度为p[i]-1
p[i]--;
}
for (int i = ; i<lendstr; i++){
if (dstr[i] == '#'&&p[i]>=){//枚举每一个'#'并且半径大于等于4的i
for (int k = p[i] / ,j=i+k*; k >; k--, j -= ){//枚举j,j为i右边的'#'
if (p[j] >= j - i){
ans = max(ans, (j-i) * );
break; //剪枝。
}
}
}
}
printf("%d\n", ans);
}
return ;
}

BZOJ 2342 回文串-Manacher的更多相关文章

  1. BZOJ 2565 回文串-Manacher

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2565 题意:中文题 思路:定义L[i],R[i].表示以i为左端点/右端点时,最长回文串长 ...

  2. 回文树(回文自动机) - BZOJ 3676 回文串

    BZOJ 3676 回文串 Problem's Link: http://www.lydsy.com/JudgeOnline/problem.php?id=3676 Mean: 略 analyse: ...

  3. BZOJ.2565.[国家集训队]最长双回文串(Manacher/回文树)

    BZOJ 洛谷 求给定串的最长双回文串. \(n\leq10^5\). Manacher: 记\(R_i\)表示以\(i\)位置为结尾的最长回文串长度,\(L_i\)表示以\(i\)开头的最长回文串长 ...

  4. BZOJ 2565: 最长双回文串 [Manacher]

    2565: 最长双回文串 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1842  Solved: 935[Submit][Status][Discu ...

  5. bzoj 2565: 最长双回文串 manacher算法

    2565: 最长双回文串 Time Limit: 20 Sec  Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/problem. ...

  6. bzoj 相似回文串 3350 3103 弦图染色+manacher

    相似回文串 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 143  Solved: 68[Submit][Status][Discuss] Descr ...

  7. bzoj 3790 神奇项链 回文串 manacher|PAM

    LINK:神奇项链 存在两个操作:1. 一个操作可以生成所有形式的回文串 2.一个操作可以将两个串给合并起来 如果前缀和后缀相同还可以将其并起来. 多组询问 每次询问合成一个串所需最少多少次2操作. ...

  8. POJ 3974 回文串-Manacher

    题目链接:http://poj.org/problem?id=3974 题意:求出给定字符串的最长回文串长度. 思路:裸的Manacher模板题. #include<iostream> # ...

  9. 【回文串-Manacher】

    Manacher算法能够在O(N)的时间复杂度内得到一个字符串以任意位置为中心的回文子串.其算法的基本原理就是利用已知回文串的左半部分来推导右半部分. 转:http://blog.sina.com.c ...

随机推荐

  1. codeforces 495C. Treasure 解题报告

    题目链接:http://codeforces.com/problemset/problem/495/C 题目意思:给出一串只有三种字符( ')','(' 和 '#')组成的字符串,每个位置的这个字符 ...

  2. ajax 删除一条数据

    代码: 对这一段话的理解:先找到需要删除的节点,以及节点里的文本:用Ajax 发送请求,请求方式为POST ,请求内容为需要删除记录的文件,dataType定义数据类型Json,通常都是Json,da ...

  3. JAVA回调接口的理解

    A类持有B接口的对象引用,B接口有一个callBack()方法,C类是B类的实现类,实现了callBack()方法,把C类传入A类,当A类执行完操作后调用callBack()方法,这时候A调用的就是C ...

  4. List,Set,Map用法以及区别

    List,Set,Map是否继承自Collection接口? 答:List,Set是,Map不是. 如图: Collection ├List │├LinkedList │├ArrayList │└Ve ...

  5. CCF 最大的矩形

    问题描述 试题编号: 3 试题名称: 最大的矩形 时间限制: 1.0s 内存限制: 256.0MB 问题描述: 问题描述 在横轴上放了n个相邻的矩形,每个矩形的宽度是1,而第i(1 ≤ i ≤ n)个 ...

  6. 让view 覆盖导航栏

    当我们想做一个弹出式菜单时,想将导航栏也一起盖住不显示的话,可以用如下语句实现: UIView* myView = /* 你自定义的view */; UIWindow* currentWindow = ...

  7. cell分割线宽度不满屏处理

    if ([cell respondsToSelector:@selector(setSeparatorInset:)]) { [cell setSeparatorInset:UIEdgeInsetsZ ...

  8. SQL Server 数据类型

    数据类型的选择帮助优化查询,比如针对int类型列和针对文本类型列可能会生成完全不同的查询计划 三种数据类型: 系统数据类型 别名数据类型:用户可以为系统数据类型提供一个别名,并且可以对数据类型做进一步 ...

  9. XMPP框架下微信项目总结(2)授权登陆/注销/注册/打印日志

    xmpp授权登陆步骤1 初始化xmppstream 连接服务器 传递属性jid(IP地址 端口号)2 连接成功后 传递“登”陆密码授权 3 授权后,发送在线消息xmpp所有的代理都是子线程中调用的,处 ...

  10. Swift - 2.3的代码到3.0的转变

    分享一下学习新语法的技巧:用Xcode8打开自己的Swift2.3的项目,选择Edit->Convert->To Current Swift Syntax- 让Xcode帮我们把Swift ...