1670: [Usaco2006 Oct]Building the Moat护城河的挖掘

Time Limit: 3 Sec  Memory Limit: 64 MB
Submit: 464  Solved: 331
[Submit][Status][Discuss]

Description

为了防止口渴的食蚁兽进入他的农场,Farmer John决定在他的农场周围挖一条护城河。农场里一共有N(8<=N<=5,000)股泉水,并且,护城河总是笔直地连接在河道上的相邻的两股泉水。护城河必须能保护所有的泉水,也就是说,能包围所有的泉水。泉水一定在护城河的内部,或者恰好在河道上。当然,护城河构成一个封闭的环。 挖护城河是一项昂贵的工程,于是,节约的FJ希望护城河的总长度尽量小。请你写个程序计算一下,在满足需求的条件下,护城河的总长最小是多少。 所有泉水的坐标都在范围为(1..10,000,000,1..10,000,000)的整点上,一股泉水对应着一个唯一确定的坐标。并且,任意三股泉水都不在一条直线上。 以下是一幅包含20股泉水的地图,泉水用"*"表示


图中的直线,为护城河的最优挖掘方案,即能围住所有泉水的最短路线。 路线从左上角起,经过泉水的坐标依次是:(18,0),(6,-6),(0,-5),(-3,-3),(-17,0),(-7,7),(0,4),(3,3)。绕行一周的路径总长为70.8700576850888(...)。答案只需要保留两位小数,于是输出是70.87。

Input

* 第1行: 一个整数,N * 第2..N+1行: 每行包含2个用空格隔开的整数,x[i]和y[i],即第i股泉水的位 置坐标

Output

* 第1行: 输出一个数字,表示满足条件的护城河的最短长度。保留两位小数

Sample Input

20
2 10
3 7
22 15
12 11
20 3
28 9
1 12
9 3
14 14
25 6
8 1
25 1
28 4
24 12
4 15
13 5
26 5
21 11
24 4
1 8

Sample Output

70.87

HINT

 

Source

凸包 卡壳

Solution

Graham扫描法求凸包,模板题

(1)找出点集p[]中最左下的点p1,把p1同点集中其他各点用线段连接,并计算这些线段与水平线的夹角,然后按夹角从小到大和按到p1的距离从近到远排序(夹角范围为 [0, 180)度,而且可以删除相同夹角且距离p1较近的点,保留最远点,这样可减少计算量。因为直线上的非端点不是凸包的极点,即如果p1,p2,p3在一条直线上,则只取凸点p1,p3。p2不在端点,故可以去掉),得到新的节点序列p1,p2,...pn.依次连接这些点,得到一个多边形(已经逆时针,有所进展,但还需去掉不在凸包上的点)。此时p1是凸包的边界起点,p2和pn也是最终凸包的顶点,p[n+1]=p1(看成循环的)

(2)删除p3,p4,...p[n-1]中不在凸包上的点:

先把p1,p2,p3入栈S中,再依次循环(i = 3 -> n-1),若栈顶的两个点和当前的点p[i]这三点连线的方向向顺时针方向偏转,表明是凹的,应删除,则栈顶元素出栈(要循环判断,即可能前面的仍是凹的,还需再出栈,举例如下图),直到向逆时针方向偏转或者栈内只有2个元素了(p1p2),就把当前点p[i]入栈。

最后栈中的元素就是最终凸包上的点。

Code

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<vector>
using namespace std;
struct Vector
{
double x,y;
Vector (double X=,double Y=) {x=X; y=Y;}
};
typedef Vector Point;
#define MAXN 5010
Point P[MAXN],ch[MAXN];
int n;
#define eps 1e-8
int dcmp(double x) {if (fabs(x)<eps) return ; return x<? -:;}
Vector operator + (Vector A,Vector B) {return ((Vector){A.x+B.x,A.y+B.y});}
Vector operator - (Vector A,Vector B) {return ((Vector){A.x-B.x,A.y-B.y});}
Vector operator * (Vector A,double p) {return ((Vector){A.x*p,A.y*p});}
Vector operator / (Vector A,double p) {return ((Vector){A.x/p,A.y/p});}
double Dot(Vector A,Vector B) {return A.x*B.x+A.y*B.y;}
double Cross(Vector A,Vector B) {return A.x*B.y-A.y*B.x;}
double dis(Point A,Point B) {return sqrt((A.x-B.x)*(A.x-B.x)+(A.y-B.y)*(A.y-B.y));}
bool operator < (const Vector& a,const Vector& b) {return a.x<b.x||(a.x==b.x&&a.y<b.y);}
int Graham_ConvexHull(Point *p,int num,Point *ch)
{
sort(p,p+n);
int m=;
for (int i=; i<num; i++)
{
while (m> && dcmp(Cross(ch[m-]-ch[m-],p[i]-ch[m-]))<=) m--;
ch[m++]=p[i];
}
int k=m;
for (int i=n-; i>=; i--)
{
while (m>k && dcmp(Cross(ch[m-]-ch[m-],p[i]-ch[m-]))<=) m--;
ch[m++]=p[i];
}
if (num>) m--;
return m;
}
double ans=;
int main()
{
scanf("%d",&n);
for (int i=; i<=n-; i++)
scanf("%lf%lf",&P[i].x,&P[i].y);
int m=Graham_ConvexHull(P,n,ch);
ch[m+]=ch[];
for (int i=; i<=m; i++) ans+=dis(ch[i],ch[i+]);
printf("%.2lf\n",ans);
return ;
}

模板题差点没1A...吓死我了

【BZOJ-1670】Building the Moat护城河的挖掘 Graham扫描法 + 凸包的更多相关文章

  1. bzoj 1670 Building the Moat护城河的挖掘 —— 凸包

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1670 单调栈维护凸包即可,用叉积判断: 维护上凸壳,然后把所有点的纵坐标翻转再求上凸壳即可, ...

  2. BZOJ_1670_[Usaco2006 Oct]Building the Moat护城河的挖掘_求凸包

    BZOJ_1670_[Usaco2006 Oct]Building the Moat护城河的挖掘_求凸包 Description 为了防止口渴的食蚁兽进入他的农场,Farmer John决定在他的农场 ...

  3. bzoj 1670: [Usaco2006 Oct]Building the Moat护城河的挖掘 -- 凸包

    1670: [Usaco2006 Oct]Building the Moat护城河的挖掘 Time Limit: 3 Sec  Memory Limit: 64 MB Description 为了防止 ...

  4. bzoj1670【Usaco2006 Oct】Building the Moat 护城河的挖掘

    1670: [Usaco2006 Oct]Building the Moat护城河的挖掘 Time Limit: 3 Sec  Memory Limit: 64 MB Submit: 387  Sol ...

  5. 【BZOJ】1670: [Usaco2006 Oct]Building the Moat护城河的挖掘(凸包)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1670 裸打了凸包.. #include <cstdio> #include <cs ...

  6. 牛客假日团队赛5J 护城河 bzoj 1670: [Usaco2006 Oct]Building the Moat护城河的挖掘 (凸包的周长)

    链接:https://ac.nowcoder.com/acm/contest/984/J 来源:牛客网 护城河 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 32768K,其他语言6 ...

  7. BZOJ 1670: [Usaco2006 Oct]Building the Moat护城河的挖掘

    Description 求凸包周长. Sol 凸包+计算几何. 这好像叫什么 Graham Scan 算法... 这个可以求凸包的周长,直径,面积. 选择一个基点,然后按极角排序,最后用一个栈一直维护 ...

  8. bzoj 1670 [Usaco2006 Oct]Building the Moat护城河的挖掘——凸包

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1670 用叉积判断.注意两端的平行于 y 轴的. #include<cstdio> ...

  9. bzoj 1670: [Usaco2006 Oct]Building the Moat护城河的挖掘【凸包】

    凸包模板 #include<iostream> #include<cstdio> #include<algorithm> #include<cmath> ...

随机推荐

  1. 迭代器和for-of循环 顺便带一下Es5中的.map遍历

    let set = new Set(); //set方法去除重复的数据 [1, 2, 3, 4, 2, 8, 4].map(function (elem) { set.add(elem); //遍历完 ...

  2. noip2016代码

    ---------------------------------------------------------------------------------- 以下均为AC代码 -------- ...

  3. Codevs1026 逃跑的拉尔夫

    题目描述 Description 年轻的拉尔夫开玩笑地从一个小镇上偷走了一辆车,但他没想到的是那辆车属于警察局,并且车上装有用于发射车子移动路线的装置. 那个装置太旧了,以至于只能发射关于那辆车的移动 ...

  4. Flex String转Date

    在Flex中日期字符串转为Date类型,可以使用静态方法DateFormatter.parseDateString(str:String):Date方法. 该方法支持的字符串格式包括: YYYY-MM ...

  5. Html5 Egret游戏开发 成语大挑战(二)干净的eui项目和资源准备

    现在我们使用egret来起步开发一个名叫<成语大挑战>的小游戏,关于egret的开发环境就不在这里啰嗦了,直接去官方下载安装就可,egret是我见过开发环境部署最简单的解决方案,这个系列教 ...

  6. nginx学习(2):启动gzip、虚拟主机、请求转发、负载均衡

    一.启用gzip gzip on; gzip_min_length 1k; gzip_buffers 4 16k; gzip_http_version 1.1; gzip_comp_level 2; ...

  7. 前后端分离工具之ftl-server

    文章来源:https://www.npmjs.com/package/ftl-server 源代码可参考:https://github.com/szmtcjm/ftl-server/blob/mast ...

  8. Chrome扩展开发之二——Chrome扩展中脚本的运行机制和通信方式

    目录: 0.Chrome扩展开发(Gmail附件管理助手)系列之〇——概述 1.Chrome扩展开发之一——Chrome扩展的文件结构 2.Chrome扩展开发之二——Chrome扩展中脚本的运行机制 ...

  9. 移除首页->重回首页

    之前发布了一篇文章<订餐系统之获取淘宝外卖订单>,因为是关于淘宝外卖的,所以文中出现这个词时,都加了链接,还设置了 target='_blank',就是为了让看的人方便点击,查看.后来,博 ...

  10. T-SQL 查询、修改数据表

    T-SQL修改表数据 INSERT语句 语法: INSERT [TOP(expression) [PERCENT]] [INTO] { <object> | rowset_function ...