【BZOJ-3052】糖果公园 树上带修莫队算法
3052: [wc2013]糖果公园
Time Limit: 200 Sec Memory Limit: 512 MB
Submit: 883 Solved: 419
[Submit][Status][Discuss]
Description
Input
Output
Sample Input
Sample Output
131
27
84
HINT
Source
Solution
树上带修莫队
本质还是树上莫队,详情可以转 BZOJ-3757苹果树
但是这里需要修改,就需要一些特殊的地方
首先DFS对树分块,没什么区别,只不过这里分块可以分得大一些,跑得快
把一个询问看成一个三元组$(a,b,t)$,$t$是询问的时间,这样对询问排序的时候,就是三关键字
然后在处理询问的时候,暴力处理修改,不过处理要分情况,如果经过则先对结果进行修改再修改数值,否则直接修改即可
并不是很详细,还是直接看VFleaKing的讲解吧ORZ VFK
启发:
莫队算法不仅可以处理不带修,同样可以处理带修的问题 (似乎还可以处理强制在线的?奇怪的姿势??)
分块的技巧有很多,应该根据实际情况去选择适合的块的大小
树上莫队的大体思路都比较类似,实际实现起来也非常像,遇到类似的问题可以如此考虑
平常得多做一些难写难调的花式题,使得码力++多看看神犇们的解题报告似乎是个不错的事
Code
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
#define maxn 100010
#define maxm 100010
#define maxq 100010
int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int n,m,Q,fk,knum,rt[maxn];long long V[maxm],W[maxn],an[maxn],C[maxn],ans;
struct Edgenode{int to,next;}edge[maxn<<];
int head[maxn],cnt;
void add(int u,int v)
{cnt++;edge[cnt].next=head[u];head[u]=cnt;edge[cnt].to=v;}
void insert(int u,int v)
{add(u,v);add(v,u);}
int stack[maxn],top,dfsx,dfs[maxn],deep[maxn],father[maxn][];
int DFS(int now)
{
int size=;
dfs[now]=++dfsx;
for (int i=; i<=; i++)
if (deep[now]>=(<<i)) father[now][i]=father[father[now][i-]][i-];
for (int i=head[now]; i; i=edge[i].next)
if (edge[i].to!=father[now][])
{
deep[edge[i].to]=deep[now]+;
father[edge[i].to][]=now;
size+=DFS(edge[i].to);
if (size>=fk)
{
knum++;
for (int j=; j<=size; j++) rt[stack[top--]]=knum;
size=;
}
}
stack[++top]=now;
return size+;
}
int LCA(int x,int y)
{
if (deep[x]<deep[y]) swap(x,y);
int dd=deep[x]-deep[y];
for (int i=; i<=; i++)
if (dd&(<<i) && dd>=(<<i)) x=father[x][i];
for (int i=; i>=; i--)
if (father[x][i]!=father[y][i])
x=father[x][i],y=father[y][i];
if (x==y) return x; else return father[x][];
}
bool visit[maxn]; int num[maxn];
void Reverse(int x)
{
if (visit[x]) {visit[x]=; ans-=W[num[C[x]]]*V[C[x]]; num[C[x]]--;}
else {visit[x]=; num[C[x]]++; ans+=W[num[C[x]]]*V[C[x]];}
// printf("%d\n",ans);
}
void Change(int x,int y)
{
if (visit[x]) Reverse(x),C[x]=y,Reverse(x);
else C[x]=y;
}
void work(int x,int y)
{
while (x!=y)
if (deep[x]>deep[y]) Reverse(x),x=father[x][];
else Reverse(y),y=father[y][];
}
struct Asknode
{
int a,b,t,id;
bool operator < (const Asknode & A) const
{
if (rt[a]==rt[A.a] && rt[b]==rt[A.b]) return t<A.t;
else if (rt[a]==rt[A.a]) return rt[b]<rt[A.b];
return rt[a]<rt[A.a];
}
}q[maxq];int numq;
struct Changenode{int a,b,t,p;}ch[maxq];int numc,p[maxq];
int main()
{
n=read(),m=read(),Q=read(); fk=pow(n,2.0/)*0.5;
for (int i=; i<=m; i++) V[i]=read();
for (int i=; i<=n; i++) W[i]=read();
for (int u,v,i=; i<=n-; i++) u=read(),v=read(),insert(u,v);
for (int i=; i<=n; i++) C[i]=read();
for (int i=; i<=n; i++) p[i]=C[i]; DFS();
// puts("OK");
// for (int i=1; i<=n; i++) printf("%d %d %d %d\n",V[i],W[i],dfs[i],p[i]);
// for (int i=1; i<=n; i++) printf("%d ",rt[i]); puts("");
// puts("OK");
while (top) rt[stack[top--]]=knum; for (int i=; i<=Q; i++)
{
int opt=read(),a=read(),b=read();
if (opt) {if (dfs[a]>dfs[b]) swap(a,b); numq++;q[numq].a=a; q[numq].b=b; q[numq].t=numc; q[numq].id=numq;}
else {numc++;ch[numc].a=a;ch[numc].b=b;ch[numc].t=i;ch[numc].p=p[a]; p[a]=b;}
}
sort(q+,q+numq+);
//for (int i=1; i<=numq; i++) printf("%d %d %d %d\n",q[i].a,q[i].b,q[i].id,q[i].t);
for (int i=; i<=q[].t; i++) Change(ch[i].a,ch[i].b);
work(q[].a,q[].b);
int T=LCA(q[].a,q[].b);
Reverse(T); an[q[].id]=ans; Reverse(T);
for (int i=; i<=numq; i++)
{
for(int j=q[i-].t+; j<=q[i].t; j++) Change(ch[j].a,ch[j].b);
for(int j=q[i-].t; j>q[i].t; j--) Change(ch[j].a,ch[j].p);
work(q[i-].a,q[i].a); work(q[i-].b,q[i].b);
T=LCA(q[i].a,q[i].b); Reverse(T); an[q[i].id]=ans; Reverse(T);
}
for (int i=; i<=numq; i++) printf("%lld\n",an[i]);
return ;
}
看论文+写+调了一整个上午..1min30s跑完..成功卡住5人评测TAT'' 吐槽一下BZOJ评测机..UOJ上就跑了20s..
【BZOJ-3052】糖果公园 树上带修莫队算法的更多相关文章
- LUOGU P4074 [WC2013]糖果公园 (树上带修莫队)
传送门 解题思路 树上带修莫队,搞了两天..终于开O2+卡常大法贴边过了...bzoj上跑了183s..其实就是把树上莫队和带修莫队结合到一起,首先求出括号序,就是进一次出一次那种的,然后如果求两个点 ...
- luogu4074 [WC2013]糖果公园(树上带修莫队)
link 题目大意:给一个树,树上每个点都有一种颜色,每个颜色都有一个收益 每次修改一个点上的颜色 或询问一条链上所有颜色第i次遇到颜色j可以获得w[i]*v[j]的价值,求链上价值和 题解:树上带修 ...
- [WC2013][luogu4074] 糖果公园 [树上带修改莫队]
题面: 传送门 思路: 一道实现起来细节比较恶心的题目 但是其实就是一个裸的树上带修改莫队 好像树上莫队也出不了什么结合题目,不像序列莫队天天结合AC自动机.后缀数组...... 莫队学习请戳这里:莫 ...
- BZOJ 3052/Luogu P4074 [wc2013]糖果公园 (树上带修莫队)
题面 中文题面,难得解释了 BZOJ传送门 Luogu传送门 分析 树上带修莫队板子题... 开始没给分块大小赋初值T了好一会... CODE #include <bits/stdc++.h&g ...
- BZOJ3052: [wc2013]糖果公园【树上带修莫队】
Description Input Output Sample Input Sample Input Sample Output 84 131 27 84 HINT 思路 非常模板的树上带修莫队 真的 ...
- BZOJ 4129 Haruna’s Breakfast ( 树上带修莫队 )
题面 求树上某路径上最小的没出现过的权值,有单点修改 添加链接描述 分析 树上带修莫队板题,问题是怎么求最小的没出现过的权值. 因为只有nnn个点,所以没出现过的最小值一定在[0,n][0,n][0, ...
- bzoj4129 Haruna’s Breakfast 树上带修莫队+分块
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4129 题解 考虑没有修改的序列上的版本应该怎么做: 弱化的题目应该是这样的: 给定一个序列,每 ...
- BZOJ 3052 树上带修莫队
思路: 就是把带修莫队移到了树上 块的大小开到(n^2/3)/2 比较好- 这是一个卡OJ好题 //By SiriusRen #include <cmath> #include <c ...
- 【BZOJ-2453&2120】维护队列&数颜色 分块 + 带修莫队算法
2453: 维护队列 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 653 Solved: 283[Submit][Status][Discuss] ...
随机推荐
- 布局 - panel
panel一般作为其他组件的容器使用 很多组件都继承自panel 对于面板中的内容,支持异步从后台加载,当然,作为纯粹的面板,一般不会用到这个,但他的子类对于这个功能还是蛮实用的 <%@ tag ...
- mysql新建用户的方法
新增 insert into mysql.user(Host,User,Password,ssl_cipher,x509_issuer,x509_subject) values("local ...
- 【转】【MySql】mysql存储过程中的异常处理
定义异常捕获类型及处理方法: DECLARE handler_action HANDLER FOR condition_value [, condition_value] ... statement ...
- Html网页使用jQuery传递参数并获取Web API的数据
昨天Insus.NET有开始学习Web API,<ASP.NET MVC的Web Api的实练>http://www.cnblogs.com/insus/p/4334316.html .其 ...
- SQL GETDATE()日期格式化函数
Sql Server 中一个非常强大的日期格式化函数 Select CONVERT(varchar(100), GETDATE(), 0): 05 16 2006 10:57AMSelect CONV ...
- script实现的日期表示
function clockon(bgclock){ var now=new Date(); var year=now.getYear(); var month=now.getMonth(); var ...
- mac系统上使用压缩包版的mysql(非安装版)
mac本换了块固态硬盘,一切重新装过,mysql嫌官网下载太慢,直接百度 "mysql mac",第一个就是: 不料下载完后,发现这是一个压缩包版,并没有安装程序.网上搜索了一下, ...
- ejb3: message drive bean(MDB)示例
上一篇已经知道了JMS的基本操作,今天来看一下ejb3中的一种重要bean:Message Drive Bean(mdb) 如果要不断监听一个队列中的消息,通常我们需要写一个监听程序,这需要一定的开发 ...
- python 测试驱动开发的简单例子
一.需求分析 需求:一个类 MyClass,有两个功能:add, sub 1.先功能设计 # myclass.py class MyClass(object): # 加法 def add(self): ...
- Social Emotional Computing -价值观的运算
第三节 价值观的运算 第三节 价值观的运算 由于价值观的客观本质就是事物的价值率,因此价值观的运算在客观本质上就是价值率的运算.由于价值观的运算就是为了揭示不同事物价值观之间的函数关系,因此价值观的 ...