[问题2014A07]  解答

我们分三步进行证明.

\(1^\circ\) 先证 \(\alpha_1,\alpha_2\) 线性无关. 用反证法, 设 \(\alpha_1,\alpha_2\) 线性相关, 我们来推出矛盾. 因为 \(\alpha_1\neq 0\), 故 \(\alpha_2\) 可表示为 \(\alpha_1\) 的线性组合, 即存在 \(k\in\mathbb{Q}\), 使得 \(\alpha_2=k\alpha_1\). 带入题中条件可得 \[\alpha_3=k^2\alpha_1,\,\,\alpha_4=k^3\alpha_1,\,\,A\alpha_4=k^4\alpha_1,\] 从而有 \[(k^4+k^3+k^2+k+1)\alpha_1=0.\] 因为 \(\alpha_1\neq 0\), 故 \(k\) 满足方程 \[k^4+k^3+k^2+k+1=0,\] 这与 \(k\) 为有理数相矛盾.

\(2^\circ\) 再证 \(\alpha_1,\alpha_2,\alpha_3\) 线性无关. 用反证法, 设 \(\alpha_1,\alpha_2,\alpha_3\) 线性相关, 我们来推出矛盾. 因为 \(\alpha_1,\alpha_2\) 线性无关, 故 \(\alpha_3\) 可表示为 \(\alpha_1,\alpha_2\) 的线性组合, 即存在 \(k,l\in\mathbb{Q}\), 使得 \(\alpha_3=k\alpha_1+l\alpha_2\). 带入题中条件可得 \[\alpha_4=A\alpha_3=kl\alpha_1+(k+l)\alpha_2,\] \begin{eqnarray*}A\alpha_4&=&klA\alpha_1+(k+l)A\alpha_2=k(k+l)\alpha_1+(kl+l(k+l))\alpha_2 \\ &=& -\alpha_1-\alpha_2-\alpha_3-\alpha_4=(-1-k-kl)\alpha_1+(-1-l-k-l)\alpha_2. \end{eqnarray*} 由 \(\alpha_1,\alpha_2\) 线性无关可得 \[k(k+l)=-1-k-kl,\,\,kl+l(k+l)=-1-l-k-l.\] 经过化简知 \(k\) 满足方程 \[3k^4+2k^3+k^2+2k-1=0,\] 但由复旦高代教材第 236 页定理 5.7.2 知上述方程没有有理根, 这与 \(k\) 为有理数相矛盾.

\(3^\circ\) 最后证明 \(\alpha_1,\alpha_2,\alpha_3,\alpha_4\) 线性无关. 用反证法, 设 \(\alpha_1,\alpha_2,\alpha_3,\alpha_4\) 线性相关, 我们来推出矛盾. 因为 \(\alpha_1,\alpha_2,\alpha_3\) 线性无关, 故 \(\alpha_4\) 可表示为 \(\alpha_1,\alpha_2,\alpha_3\) 的线性组合, 即存在 \(k,l,r\in\mathbb{Q}\), 使得 \(\alpha_4=k\alpha_1+l\alpha_2+r\alpha_3\). 带入题中条件可得 \begin{eqnarray*}A\alpha_4&=&kA\alpha_1+lA\alpha_2+rA\alpha_3=kr\alpha_1+(k+lr)\alpha_2+(l+r^2)\alpha_3 \\ &=& -\alpha_1-\alpha_2-\alpha_3-\alpha_4=(-1-k)\alpha_1+(-1-l)\alpha_2+(-1-r)\alpha_3. \end{eqnarray*} 由 \(\alpha_1,\alpha_2,\alpha_3\) 线性无关可得 \[kr=-1-k,\,\,k+lr=-1-l,\,\,l+r^2=-1-r.\] 经过化简知 \(k\) 满足方程 \[k^4+k^3+k^2+k+1=0,\] 这与 \(k\) 为有理数相矛盾.

综上所述, \(\alpha_1,\alpha_2,\alpha_3,\alpha_4\) 是 \(\mathbb{Q}^4\) 的一组基.  \(\Box\)

  一般的, 我们还可以证明如下推广. 显然, 此时若按上述方法证明将不再可行. 在学了高代 II 中的 Cayley-Hamilton 定理之后, 我们将给出一个相当简洁的证明.

推广  设 \(A\) 是有理数域 \(\mathbb{Q}\) 上的 \(p-1\) 阶方阵 (其中 \(p\) 为素数), \(\alpha_1,\alpha_2,\cdots,\alpha_{p-1}\) 是 \(\mathbb{Q}\) 上的 \(p-1\) 维列向量, 满足: \[ A\alpha_1=\alpha_2,\,\,A\alpha_2=\alpha_3,\,\,\cdots,\,\,A\alpha_{p-1}=-\alpha_1-\alpha_2-\cdots-\alpha_{p-1}.\] 证明: 若 \(\alpha_1\neq 0\), 则 \(\{\alpha_1,\alpha_2,\cdots,\alpha_{p-1}\}\) 是有理数域 \(\mathbb{Q}\) 上的 \(p-1\) 维列向量空间 \(\mathbb{Q}^{p-1}\) 的一组基.

[问题2014A07] 解答的更多相关文章

  1. 精选30道Java笔试题解答

    转自:http://www.cnblogs.com/lanxuezaipiao/p/3371224.html 都 是一些非常非常基础的题,是我最近参加各大IT公司笔试后靠记忆记下来的,经过整理献给与我 ...

  2. 精通Web Analytics 2.0 (8) 第六章:使用定性数据解答”为什么“的谜团

    精通Web Analytics 2.0 : 用户中心科学与在线统计艺术 第六章:使用定性数据解答"为什么"的谜团 当我走进一家超市,我不希望员工会认出我或重新为我布置商店. 然而, ...

  3. 【字符编码】Java字符编码详细解答及问题探讨

    一.前言 继上一篇写完字节编码内容后,现在分析在Java中各字符编码的问题,并且由这个问题,也引出了一个更有意思的问题,笔者也还没有找到这个问题的答案.也希望各位园友指点指点. 二.Java字符编码 ...

  4. spring-stutrs求解答

    这里贴上applicationContext里的代码: <?xml version="1.0" encoding="UTF-8"?> <bea ...

  5. JavaScript Bind()趣味解答 包懂~~

    首先声明一下,这个解答是从Segmentfault看到的,挺有意思就记录下来.我放到最下面: bind() https://developer.mozilla.org/zh-CN/docs/Web/J ...

  6. CMMI4级实践中的5个经典问题及解答

    这五个问题相当经典而且比较深,需要做过CMMI4.5级的朋友才能看懂这些问题.这5个问题是一位正在实践CMMI4级的朋友提出来的,而解答则是我的个人见解. 五个疑问是:   A.流程,子流程部分不明白 ...

  7. 海边直播目标2017全国初中数学竞赛班课堂测试题解答-The Final

    1. 设函数 $f(x) = 2^x(ax^2 + bx + c)$ 满足等式 $f(x+1) - f(x) = 2^x\cdot x^2$, 求 $f(1)$. 解答: 由 $f(x) = 2^x( ...

  8. 知乎大牛的关于JS解答

    很多疑惑一扫而空.... http://www.zhihu.com/question/35905242?sort=created JS的单线程,浏览器的多进程,与CPU,OS的对位. 互联网移动的起起 ...

  9. [问题2014A01] 解答一(第一列拆分法,由张钧瑞同学提供)

    [问题2014A01] 解答一(第一列拆分法,由张钧瑞同学提供) (1)  当 \(a=0\) 时,这是高代书复习题一第 33 题,可用升阶法和 Vander Monde 行列式来求解,其结果为 \[ ...

随机推荐

  1. 微信公众号内H5调用微信支付国内服务商模式

    最近在折微信公众号内H5用JSAPI调用微信支付,境内服务商版支付,微信支付给出的官方文档以及SDK不够详细,导至我们走了一些弯路,把他分享出来,我这边主要是用PHP开发,所以未加说的话示例都是PHP ...

  2. BizTalk开发系列(十五) Schema设计之Qualified 与Unqualified

    XML Schema中的命名空间前缀限定包括对元素(Element)或属性(Attribute)的限定,即常见的如 “<ns0:root>...</ns0:root>”之类的格 ...

  3. C# 特殊关键字

    1.static 表示被修饰的对象的生命周期与当前的应用程序域相同,因此可以在多个实例中共享 2.const 表示常量且只能在声明时赋值,因此const的常量在编译时就能确定,它如果没有被static ...

  4. TCP/IP协议分层

    TCP/IP协议从上而下,层层包装: (1)应用层:HTTP (2)传输层:TCP和UDP (3)网络层(网际互联层):IP (4)数据连接层(网络接入层):为IP模块发送和接收IP数据报. (5)硬 ...

  5. WPF TabControl 隐藏标头

    1. 将每个 TabItem 的 Visibility 属性设置为 Visibility.Collapsed 即可隐藏标头 <TabItem Visibility="Collapsed ...

  6. Wordpress 标题设置

    使用标题格式:首页(网站标题 - 网站副标题),其他页面(页面标题 | 网站标题) 在后台找到头部文件head.php <?php wp_title('|', true, 'right'); e ...

  7. LightOj 1215 - Finding LCM(求LCM(x, y)=L中的 y )

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1215 题意:已知三个数a b c 的最小公倍数是 L ,现在告诉你 a b  L 求最 ...

  8. Vcenter server 5.5安装部署

    1.安装VMware ESXi Server 虚拟主机安装方法请看本人博客 "实践记忆": http://www.cnblogs.com/zoulongbin/p/5896836. ...

  9. (地址)eclipse插件开发攻略的访问地址

    园子地址: http://www.cnblogs.com/liuzhuo/category/257208.html 关键字: Eclipse插件开发彻底攻略 eclipse插件开发基础篇之

  10. 分享:一款前端布局工具(alloydesigner)

    困扰 设计师给出静态的高保真图片, 需要前端工程师按照高保真图,进行html编码. 前端工程师, 一般工作方法为: 打开图片,一边看下图片, 一边编写相应的html代码. 这样有两个问题: 1. 前端 ...