[问题2014A13]  解答

先引入两个简单的结论.

结论 1  设 \(\varphi\) 是 \(n\) 维线性空间 \(V\) 上的线性变换, 若存在正整数 \(k\), 使得 \(\mathrm{r}(\varphi^k)=\mathrm{r}(\varphi^{k+1})\), 则 \[\mathrm{Im\,}\varphi^k=\mathrm{Im\,}\varphi^{k+1}=\mathrm{Im\,}\varphi^{k+2}=\cdots.\]

结论 1 的证明  对任意的正整数 \(k\), 显然有 \(\mathrm{Im\,}\varphi^k\supseteq\mathrm{Im\,}\varphi^{k+1}\), 故由 \(\mathrm{r}(\varphi^k)=\mathrm{r}(\varphi^{k+1})\) 即得 \(\mathrm{Im\,}\varphi^k=\mathrm{Im\,}\varphi^{k+1}\). 因此, 我们只要证明对任意的正整数 \(l\geq k\),  \(\mathrm{Im\,}\varphi^l=\mathrm{Im\,}\varphi^{l+1}\) 即可. 一方面的包含是显然的, 现证 \(\mathrm{Im\,}\varphi^l\subseteq\mathrm{Im\,}\varphi^{l+1}\). 任取 \(\varphi^l(\alpha)\in\mathrm{Im\,}\varphi^l\), 则 \(\varphi^l(\alpha)=\varphi^{l-k}(\varphi^k(\alpha))\). 又存在 \(\beta\in V\), 使得 \(\varphi^k(\alpha)=\varphi^{k+1}(\beta)\), 从而 \(\varphi^l(\alpha)=\varphi^{l-k}(\varphi^{k+1}(\beta))=\varphi^{l+1}(\beta)\in\mathrm{Im\,}\varphi^{l+1}\).

结论 2  设 \(\varphi,\psi\) 是 \(n\) 维线性空间 \(V\) 上的线性变换, 则 \(\mathrm{r}(\varphi\psi)\geq \mathrm{r}(\varphi)+\mathrm{r}(\psi)-n\).

结论 2 的证明  这就是关于秩的 Sylvester 不等式, 可参考复旦高代书第 201 页习题 7.

回到本题的证明. 由假设存在充分大的正整数 \(N\), 使得 \(\varphi^N=0\). 下面用归纳法来证明 \(\mathrm{r}(\varphi^k)=n-k\), \(1\leq k\leq n\). \(k=1\) 时就是题中假设. 设 \(\mathrm{r}(\varphi^k)=n-k\), 其中 \(1\leq k<n\), 现证 \(\mathrm{r}(\varphi^{k+1})=n-(k+1)\). 由结论 2 知 \[\mathrm{r}(\varphi^{k+1})=\mathrm{r}(\varphi^k \varphi)\geq \mathrm{r}(\varphi^k)+\mathrm{r}(\varphi)-n=n-(k+1).\] 又 \(\mathrm{r}(\varphi^{k+1})\leq \mathrm{r}(\varphi^k)=n-k\), 若 \(\mathrm{r}(\varphi^{k+1})=\mathrm{r}(\varphi^k)=n-k\), 则由结论 1 知 \(0 \neq n-k=\mathrm{r}(\varphi^k)=\mathrm{r}(\varphi^N)=0\), 矛盾. 因此只能是  \(\mathrm{r}(\varphi^{k+1})=n-(k+1)\), 从而结论得证. 特别地, 我们知道 \(r(\varphi^{n-1})=1\) 并且 \(\varphi^n=0\). 取 \(\alpha\in V\) 使得 \(\varphi^{n-1}(\alpha)\neq 0\), 但 \(\varphi^n(\alpha)=0\). 最后由复旦高代书第 206 页复习题 13 可知 \(\alpha,\varphi(\alpha),\cdots,\varphi^{n-1}(\alpha)\) 是 \(V\) 的一组基, 从而 \[V=L(\alpha,\varphi(\alpha),\cdots,\varphi^{n-1}(\alpha),\varphi^n(\alpha),\cdots).\,\,\,\Box\]

 在学了矩阵的 Jordan 标准形理论之后, 我们可以给出 [问题2014A13] 的一个十分简洁的代数证明.

[问题2014A13] 解答的更多相关文章

  1. 精选30道Java笔试题解答

    转自:http://www.cnblogs.com/lanxuezaipiao/p/3371224.html 都 是一些非常非常基础的题,是我最近参加各大IT公司笔试后靠记忆记下来的,经过整理献给与我 ...

  2. 精通Web Analytics 2.0 (8) 第六章:使用定性数据解答”为什么“的谜团

    精通Web Analytics 2.0 : 用户中心科学与在线统计艺术 第六章:使用定性数据解答"为什么"的谜团 当我走进一家超市,我不希望员工会认出我或重新为我布置商店. 然而, ...

  3. 【字符编码】Java字符编码详细解答及问题探讨

    一.前言 继上一篇写完字节编码内容后,现在分析在Java中各字符编码的问题,并且由这个问题,也引出了一个更有意思的问题,笔者也还没有找到这个问题的答案.也希望各位园友指点指点. 二.Java字符编码 ...

  4. spring-stutrs求解答

    这里贴上applicationContext里的代码: <?xml version="1.0" encoding="UTF-8"?> <bea ...

  5. JavaScript Bind()趣味解答 包懂~~

    首先声明一下,这个解答是从Segmentfault看到的,挺有意思就记录下来.我放到最下面: bind() https://developer.mozilla.org/zh-CN/docs/Web/J ...

  6. CMMI4级实践中的5个经典问题及解答

    这五个问题相当经典而且比较深,需要做过CMMI4.5级的朋友才能看懂这些问题.这5个问题是一位正在实践CMMI4级的朋友提出来的,而解答则是我的个人见解. 五个疑问是:   A.流程,子流程部分不明白 ...

  7. 海边直播目标2017全国初中数学竞赛班课堂测试题解答-The Final

    1. 设函数 $f(x) = 2^x(ax^2 + bx + c)$ 满足等式 $f(x+1) - f(x) = 2^x\cdot x^2$, 求 $f(1)$. 解答: 由 $f(x) = 2^x( ...

  8. 知乎大牛的关于JS解答

    很多疑惑一扫而空.... http://www.zhihu.com/question/35905242?sort=created JS的单线程,浏览器的多进程,与CPU,OS的对位. 互联网移动的起起 ...

  9. [问题2014A01] 解答一(第一列拆分法,由张钧瑞同学提供)

    [问题2014A01] 解答一(第一列拆分法,由张钧瑞同学提供) (1)  当 \(a=0\) 时,这是高代书复习题一第 33 题,可用升阶法和 Vander Monde 行列式来求解,其结果为 \[ ...

随机推荐

  1. 20145337 《Java程序设计》第六周学习总结

    20145337 <Java程序设计>第六周学习总结 教材学习内容总结 输入\输出 InputStream与OutputStream 从应用程序角度来看,如果要将数据从来源取出,可以使用输 ...

  2. 20145337《Java程序设计》第四周学习总结

    20145337<Java程序设计>第四周学习总结 教材学习内容总结 继承与多态 继承 继承,避免多个类间重复定义共同行为 符合DRY(Don't Repeat Yourself)原则,多 ...

  3. Asp.net点击按钮弹出文件夹选择框的实现(网页)

    本文地址:http://www.cnblogs.com/PiaoMiaoGongZi/p/4092112.html 在Asp.net网站实际的开发中,比如:需要实现点击一个类似于FileUpload的 ...

  4. BizTalk开发系列(一) "Hello World"

    学习开发语言的时候很喜欢输出“Hello World”作为第一个程序.今天我们也在BizTalk 上创建一个简单的 "Hello World" 程序. BizTalk的时候有很多文 ...

  5. Unity学习疑问记录之时间变量

    1.Time.deltaTime 以秒计算,完成最后一帧的时间 放在Update()函数中的代码是以帧来执行的.如果我们需要物体的移动以秒来执行.我们需要将物体移动的值乘以Time.deltaTime ...

  6. iTop各数据表联系图(持续更新中)

  7. 安装XDEBUG步骤及问题

    echo PHPINFO(); 如果搜索中没找到XDEBUG, 则表示没安装XDEBUG; XDEBUG官方下载路径, https://xdebug.org/download.php 查看环境参数 我 ...

  8. Git command line

    # Pull the repo from master git pull # Create branch for myself in local git branch john/jenkins_cod ...

  9. Hibernate @Formula

    在使用Hibernate时经常会遇到实体类某个字段存的是code值而非我们最终想要的中文具体显示的值, 如果使用Hibernate的一对一关联这种,一个属性还好说,但是如果一个实体类里有多个字段都是需 ...

  10. java中日历代码的实现

    import java.util.Scanner; com.lv.calendarWatch//包名 /* * 需求:输入一个年份和月份 ,显示当前月日情况 ,星期数要对应准确 * 1.1900年1月 ...