118. Pascal's Triangle
题目:
Given numRows, generate the first numRows of Pascal's triangle.
For example, given numRows = 5,
Return
[
[1],
[1,1],
[1,2,1],
[1,3,3,1],
[1,4,6,4,1]
]
代码:
仔细一看,规律就是本层第一个和最后一个的元素都是1,其他的元素分别等于上一层同位置元素加上前一个位置的元素。
一百度,才知道,这就是大名鼎鼎的杨辉三角!只可惜,在欧洲,这个表叫做帕斯卡三角形。
但帕斯卡(1623----1662)是在1654年发现这一规律的,比杨辉要迟393年,比贾宪迟600年。
布莱士·帕斯卡的著作Traité du triangle arithmétique(1655年)介绍了这个三角形。帕斯卡搜集了几个关于它的结果,并以此解决一些概率论上的问题,影响面广泛,Pierre Raymond de Montmort(1708年)和亚伯拉罕·棣·美弗(1730年)都用帕斯卡来称呼这个三角形。
估计由于发现该规律后对数学界的影响吧,于是就成为了Pascal's Triangle.
具体的数学定义还有很多,请自行百度。
用java实现,根据规律,不是很复杂,但由于经验,还是折腾了好久,不过还算顺利:
//Pascal's Triangle(杨辉三角),根据层数构建相应的杨辉三角
public List<List<Integer>> generate(int numRows) {
//创建元素为List<Integer>的链表list
List<List<Integer>> list = new ArrayList<>();
if (numRows<=0)
{
return list;
}
//构建一个元素构成的第一次,不依赖上一层
List<Integer> list1 = new ArrayList<Integer>(1);
list1.add(0, 1);
list.add(list1);
if (numRows==1)
{
return list;
}
//每层递增,通过循环创建每层的链表,并计算元素值
//由于链表不能根据任意序号插入元素,所以元素的插入还是按顺序来的
for (int i = 2;i <= numRows; i++)
{
System.out.print("循环: "+i+"\n");
List<Integer> e = new ArrayList<Integer>(i);
e.add(0,1);
//从第三层开始,本次处两端元素为1,其余都根据上层相应元素求出
if(i>2)
{
for (int j = 1;j < i-1;j++)
{
System.out.print("i: "+i+" "+"j: "+j+"\n");
int num = list.get(i-2).get(j-1)+ list.get(i-2).get(j);
e.add(j, num);
}
}
e.add(i-1,1);
list.add(e);
}
return list;
}
完全按照定义实现,为了保障返回根据题目要求,返回List<List<Integer>>,所以直接用ArrayList。
结果:
同样代码提交了两次,一次4ms,一次5ms,不明觉厉。
结果分布leetcode还没整出来,只能后面再看啦
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAABI4AAAEDCAIAAADcH9hvAAAgAElEQVR4nO3d/28bx4H38fuf5qcFRQg0UjmyYRdy/VTPMQ4eu+c2kP00OsM6RbJjClWRxqmcni+M3TRSHFa+ujVsBtY5bqNHqAOe3cs5iFL4BAc1mpQq8ugQpMIDBEIC/kLw+WG/ze7O7BdqJY6s9wv5ISZ3Z3d2VuJ8NMPZv+sAAAAAAAzzd70+AQAAAABAGFENAAAAAIxDVAMAAAAA4xDVAAAAAMA4RDUAAAAAMA5RDQAAAACMQ1QDAAAAAOMQ1QAAAADAOEQ1AAAAADAOUQ0AAAAAjENUAwAAAADjENUAAAAAwDh5RrXW6gfzMyPlgaIlhBBCWMWBoWNnqrdXNroscGFMCCEOVx/meJJhD6uHt+QYW1VuLPuCRW26JTqdTqfTWr1bfe4nd7o+r7EF55/2tfH/DQAAACAsr6jW+uTa6IClDgqi8Ez1QTchgaiWkS6qSS1xobHWZeF3Jqxu8xVRDQAAAMgon6jWun9+vxBCWAcn5u+tfOHEso0vVu7NTxy0hBCif7SePSJsR1R7ojhRLZyBWut//fD2hefsKG0NV5db3ReeR74iqgEAAABJ8olqS1P92jjWWpoqdZm4iGoZaaKaY+PBxWGr+ytKVAMAAAC2Ty5R7fGbz8QlgOWLQ0IUSj96z31BF8HCr3v/3ngwf7pcKgghRKFUPj17d7UV3W9sobOxcuOss51VPHCiam/X+qQ+fexA0bJfPTZzR95bMVFxY+XG9LEhuxhhFQfKp6Pf8krcRjkBsrX6wby/W6E0dGz6RqhkuS7uWSsrrRIf1fzRz/6ppZjqRM/LyVY+qV4bK7erZ7x9nb3nPwicbPIEyNbq3dnT3tccVWUAAAAAu0qeo2rWyHy6znW2qLZ3+JkBSwhRKA0Oun354Cw+e7vjY2MlOzcNDrrBoTS1+KA6bIVfnbiz7u4bjlRrC2MlN38NDnr7WAdn7nsHTLNNNKqtLU4dtKTd3LMpPHNZUZcJr87+hsd/+TjNhY0brno8e0QIIfaev++91Fq+crzkxqxB/xqXjl9xz+vRW993T6NQGhwcHPz+W4+CV8J53TtXURpb8IdYE6Jaa7k6bEmleGdw8npChQEAAIAnVU7fVXP72oV9x6bnlj7863psZMsW1YQQhWcuuGNKGyvzJ0t2CltqhbcrnZx3BoNaq/MjlhDCsqzAqzdG+4UQYuSam9VCkerBhf1CiNJY3QudrdW6HUeOzD5Ov000Al6zz2dgdN4br9p4MGuHJCk7KuriFx8ZDVNewNiZhffP7xVCiKNXmk7ZzvxU6XCdjZUb9lcM95+/Hw6Rctnr109aQoj+kZo0BLfx4OdH+4UQYvjyI82uoahmF2MNX/TXnnHnava/uMjIGgAAAHal3BbrX1ucPuSOqNjjI0PHTs3MvXvvcTS2ZYxq/WML6/JmzjQ+6+T19eB2wX69vWJh+FXna3Ve5glFKruo0XrgnNevjVjFgcEzC1+l3kYdAaN1dqckehlPXZfO+rWRUPxRSRHVnJjknkjzylEhhDh8MbzUiL2df40VUe2rhTODA0XLj6cuJw76m8ZHNfufQxeXw4UUSoPPXgq+CgAAAOwSuT4Ce+PTe4EHq7mp7dDp+cBi/RknQEqT9RzLF4eEENbEHXm7cEJRL14RfjUUqZypnAcn5lUZM/02oXLtE5YG83xOWHKHuey6eFXz2MEzYUGQzFHNSYDeGJvk0eXh4ImkX1YkcuXjo5pzBUrHL9z+8ItNPfkNAAAAeGLkGtV8G1+s3Ht3bmakrPzuUraoFhq+UmypLq+rqNZ5+OYz3uCgVRwoj8zMLYUDRKptAuXGrWUZHOfTbZnqOW2Zo5oz/uV80SzIbrpwa+hWl/ziL39ZufdufW7mlLfESNqo1lm/c9Z/Jl+hNHTsTPVmTAoGAAAAdoEtimq+1urd6vHQl8uyRTVVONi6qOYuRliSZ3MKq/jdaXnhyORt0ke14BltdVSzg6E7vpf4zOyE1lBdB2EVClamqNbpBNa79ELbvhOzXT06HQAAANj5cohqXy2cGShacV+jcqbZhb4QtvlRNfeQ+UY118YXHy5drZ7xA8T+Cw/Sb5N1VM2d5rnFUS30nTlnLmdkuqW+cLlsd/1HqzhQHpn8UfVq/d17K39db2WcAClprT8OjsbKX5YDAAAAdpE8RtWcWXTR5SU8ofyhiSPuEhehqBZeb8I7Yui7anlHNd/Gg1cPK884Zptguc5RVd9Vc5bPD35XbYuimruIiRcoI5c8sXCpbCfnBZ6b0Ol0vG/mdRHVpFN1F+vkQdkAAADYlXKZAOkM1ZROXvtE9f2itfpovxDCGltw3nVWBfH+7WxmL2cfXQEysGR8x1tf3t8/v6j23o8GB0uFaOiUj5Bmm8wrQCaOOOYQ1dw0aR294p27ExTDl7jTWV8Y67eKAwcq734VKNwvO7SWZKRKaaPao7e+PzhQLEWW5U8T6AAAAIAnVT7fVfOfCT3w3IXb3mPVNr5YuTc//eyAJYSwhi97XfrWwpj90vmGs9RIa/XueecpyKrnqkkP/XKfRSaXl19Uc54UZg1f/IO/qoX7kC/ny3Zpttnsc9XyjWobX/zlw9sXnrOX7pAvXKfTWb8zYZ/C8ar76LpOa/0Ps+HvF0bHOJ1WFIdfangLxmx8+n+q7vO0U4+quUl/7Man3jfT3EfJybESAAAA2EXyWlak9cm10YHgGv2SwqHpxTV584eXnWBmFQcGB+3V/UvHp0aHFFHt+Jjdafe3DD5/OucVIH/pRg2rOOAvhCisg1NeFVJtE4lWa4tTB6VKuzuJwjOXl5Pqki2q6RWeqUYW6mgtX3YXtLRXglSfmHvlRKE0OFh+7YH04PPgjtbA6MRIv5AfApe0AuTS9MFAQV4zH78SnlwJAAAA7A55rgDZWv/j7eqZY0P+c9XshddvryiW8Wt98tsLJ5xl3Qul8unZu6utcBxxe/it1bvVE/bKHVbxwLHpG6EC814B8oP5ab8WVnHAPrvA2Sduo4xWrdW7s2e8xewLpfLITLq6bDKqFUqD5ZGZ+XufatZTbK3/8ca0d16iUBqKXuROp7V85YS7forzrbvAwo2F0tCx6fkPVlvuOjKh53rHrwB5u3q6PJhwBgAAAMCuseWL9QMAAAAAsiKqAQAAAIBxiGoAAAAAYByiGgAAAAAYh6gGAAAAAMYhqgEAAACAcYhqAAAAAGAcohoAAAAAGIeoBgAAAADGIaoBAAAAgHGIagAAAABgHKIaAAAAABiHqAYAAAAAxiGqAQAAAIBxiGoAAAAAYByiGgAAAAAYh6gGAAAAAMYhqgEAAACAcYhqAAAAAGAcohoAAAAAGIeoBgAAAADGIaoBAAAAgHGIagAAAABgHKIaAAAAABiHqAYAAAAAxiGqAQAAAIBxiGoAAAAAYByiGgAAAAAYh6gGAAAAAMYhqgEAAACAcXKIaqsAAAAAgE3LP6ptvhAAAAAA2M2IagAAAABgHKIaAAAAABiHqAYAAAAAxiGqAQAAAIBxiGoAAAAAYByiGgAAAAAYh6gGAAAAAMYhqgEAAACAcYhqAAAAAGAcohoAAAAAGIeoBgAAAADGIaoBAAAAO0MbxsuxuYlqAAAAwM7Q6xiCZDk2N1ENAAAA2Bl6HUOQLMfmJqoBAAAAO0OvYwiS5djcRDUAAABgZ+h1DEGyHJubqAYAAADsDL2OIUiWY3MT1QAAAICdodcxBMlybG6iGgAAALAz9DqGIFmOzU1UAwAAAHaGXscQJMuxuYlqAAAAwM7Q6xiCZDk2N1ENAAAA2Bl6HUOQLMfmJqoBAAAAO0OvYwiS5djcRDUAAABgZ+h1DOnOn2Znin3jxWPv/KnXZ9Jut7/6r/emxt/5uMu9lyb6xsuXVuI2ybG5iWqb0mw2t3lHAAAA7FpdBoze+vPcsfGn953b0/fjn33Q63Npt2+9MF4sXyeqbZFmrSyEqDTCr/jk93yNihDlWjO3Mpu1sra8xAp0teOTq1HRtRoAAAA8XQaMdvuzzz7LZZsufPCr7/SNPz936x9L409PNb7eikNkQVTbMo2KKjr5r8ZENW1A6rZMolp+iGoAAAApxOeI989Jvddz77svf/Z2WZTf/ix21zTbdOfeT39U7Hv17U//dn10sliqXv8y9P43j+q1H3zn7J6+8WLp7OEf1OqPvknz1l9+f31U/Zadpv7j/UvVQ0+NF/vO7D86d+O/vmq32+32yuvl8WKf85+buGKKarfb//3+perhgcli3+TeZ2vvfU5U03DGucrlcig6NWtl/XhZYKNIGui6TGnQzdlLekXaL/JqdEdVqfKRg+N73k7q46U9jZBGRZRrDW+j8IVIefRMpySl4XKtRlQDAABIFpMQ3j8XjmfuP3sZ1b5uTO0dL/7g1mft9te33tjTN/692T9Lb3/z0aVX9vSNf+vvf/76vy5evfTz8lPjxX1vvvtl/Fvtj2dnvtU3efAfam/dXLw5V/uHA5PF0iuvf2RHrKWJvvGn953b89RPpuYWb87Vju4bL5ZeeeOP7Xb7bx/9bvH8sfHity+/eXPxtx/9Lamob5amzxX7Jg/+719dvXn79fGf7H32lTJRTalZK5drTbeH73fsQ1MVNT1+9bjNZsqUB8cCA2X+P+SD+v+vG1XztpA3CJx3o+KeTIqSk04jfOhg6LT/P8vRM51SpI5ENQAAgET6gPD+uVDUcqLbZ2973Vo7uUkvuK+FtgmGPulf0nb+sSIHDiS1W2/s6Rt//td/a7fb7a+XJkrBxUW+/N0/lsb3PP/u5972965+56lz//Sb/5v41nde/o+v/MN8OHNofM/o775st+2oJsWtdvvzd58vee8GJ0DGF/Wnd77XN77/hSX3HL756LWXi0S1WOGOfXiqorLTH/dFtS7LlMJGOP80a2VRacTkQ9W5pJkEqMxF2hLiTyNmT80O2Y6e5ZSYAAkAAJCCPiDIw2iKt9w0FYhh758LBDjlNv6/5JeDm2iFJj1+897Ui0V5cZF339zTNzlx6xvFrvq3vq5fKvadPfnPizdv+v+dPzZe7HvjVrttR7U9LyxJX4r75tYLk8XSm++22+1gVIsv6stfv1bs+9HMPenYX777PFEtVihW2QNg0liNKleppz9uvszIpEZfudaU3wnNKYxGtdhvsMnR0R+tCpWc8TRC5YenLEr/TnX0TKcUrqyb4AAAABAjNhhJX1ULjHPpJzf6iStjVEvnT+98r88fzmq321+/N/d0n7+4yMobrxT7Xn79j4pdY976+NLL3vfNgv+98sZKW7nyx8eXXvZKk6NafFEfX3q52PfatcCX6+5N7yWqxYmdLhcIWcF94qJAN2UGo1rsd+XcrBO3ecxYm3/0SD3kkjOeRugdZVTLcPRMp0RUAwAA6EKKfNT2M5v2u2ry+iOpo5o0/zFdYnMepxb9zx1nkxNUSHdvtdttfVSzg1w0qmmLUkW1D2e+TVSLE4pV9j/jR8ASpj92VWbcBEglb/ssEyBDGSp+RmW204g5tvvPTEfPdEpMgAQAAMguLiKE+OErHMP8UbdMo2ryC5GRO4Xlnx0aL5ZenbkZmF741uSPi97iIopZjnfPPnX2f/7zg5i3vvz1a0Xv+28KSxN9409Py9MWv7n1wmRx75WldrsdjGrxRTEBsguJ3yuLGf/Kr8zosiL+Nl4ylBNI8iBccC2O6Loe7nKV8SWnPg1t/f1gm+nomU4pMCWVZUUAAABS0eYDxexE7yUphoXWAOkqqrXD26vdu/rtPtWD1P70zvf6xouHfvWfbcWyIp/XLz1tJ7Skt4rlX3/kFf31w9fK49/6zrV/b7edZUX2Xqq7e3698s4PpEe6RZcV0Rb16b+NlMafPr3oLyty6ZU9RLVYio69lKw0mSrFshqZyvTKVS3WL+0Q/ZpXZMdoibrUWGlIeUhZcqbTCFW2UqlE9st29EynFHg0gbRYf2gkDwAAAB59QPjs7XJgoEtaZiQY1bzc5cxnjI68hRf6V3xXLTGpRVYQ8f3t+uhkse/Fqfe+8cLP/qO1t24uXv3Zvxwsje959sbHUi6KeWvPgX/52b8u3pz71fN/f6bYd27i1n+3220nqvWN7zlw4aW5xZtzc+Wnxov73rjl5q2l6ReLfT+emLMX648vyn7XWcr/ramffCvwQDaNHJt7B0Y15I8JiAAAADtAXEQIPQI7HNukwOU49370i2hOFvO2Kr/9/tvlyKsiuIxkNLTZo1XyuvyS4OIi0nOunzp3dGrxkT8Ml+6tvjP7h6uv/37VfXNpom+8+MK/vffST/c/NV4snT08ev33f/EnUn790a3RoTPFvvE9Z+8mFdVut796eGPu6L4zxb7xb+376VS9PkZUwzYjqgEAAOwAcREBNjuqLfXs+Dk2N1ENHaIaAADAjtCz/LGDENXSlwgAAAAgFz3LHzsIUS19iQAAAABy0bP8sYMQ1dKXCAAAACAXPcsfSC3H5iaqAQAAADtDr2MIkuXY3EQ1AAAAYGfodQxBshybm6gGAAAA7Ay9jiFIlmNzE9UAAACAnaHXMQTJcmxuohoAAACwM/Q6hiBZjs1NVAMAAAB2hl7HECTLsbmJagAAAMDO0OsYgmQ5NjdRDQAAANgZeh1DkCzH5iaqAQAAAIBxiGoAAAAAYByiGgAAAAAYh6gGAAAAAMbZ1VGt2Wz2+hQAAACAVOS+K/3Y3WAHRbVmrSzCyrXmJkpz925UNlFQSo2KEEJUGlt7FAAAAGwDu2vnSO7hNSpd9gO9bqrcd5X/P/3ppju+3eMObutXtvsucz594UZld3Wnd1hUC7ZN9ts0n32zc2/wXXVvAQAAPJGCwadZKyd28rqOap7tiGp+JJO2DYTSnnZnd+HIx46OavJ4WPAG9P/VqIhyreENyPl/lpDuNrcU+7avVfy3GpXITSntK/2IxA3MhY4W4tx0NXejSkPaQ3nYXXaLAgAAGCXS7wv0PHU9Uqm7522S3Pm0jyX3JmuRnqW6dyqFLPsQgRIjlXIKKZfLwc6mnI80WSlVb1be1x25U0TD0KBeo+JUKji9Tr5+yv5xmp5zIIPKl0Q+d+8EFAVvw6jPbohqgZvd3V41AVK+N8K3U3ToOeUfNJxCa4rBZO+cYshno7mdAAAAsH1ihtFS9Uj9/ZM7n4kTIHW901BfV59Y/EqVa83ItuGooqt0yt6sHNVUW2WJatHDBusb33PWbRM8kJ1cteVu+QDKjo5qUvKK/xuG4nVtVJOjf/j/w2PHqvQY5N2Vqnm/0hbyj2vg9pMyJPEMAADACFKnPTKQldwj9f6Z2PlMjGq63qnmgGlrFspKlUp4PFBxMWJ7s6qoJlUhlJTUSTGad6WLL+2YuecsFeycWnC8MjAtzys3cN5bZIdFNX2QzSuqyVc/0BJe3EpO6R7p7kqIatKwX/Amlm/u7crvAAAASCW0IEHsV3Ka3l5upzOp85kY1XS90/Dkr+TxhWCFgllJ1/9W7RLfm42+3gnmsdRRTT2Ul7XnLG8ppcvQ/M9oDbyLusX98h0W1YLtJl+Z7YpqGZKz8mcn0p7Rmy5wp8o/ktEbEQAAAL0WmK+47VFN982zHKNacJBJ8Y2k5N6s6rtq8v55RrUUPWdFP52otinhWyyY1rYjqmUYO3YPkVtU0+0BAACA7aToEMrJKusEyE1FNW3vNK8JkME4ou6F5h/VlBMl4ydApq2QXC3FMZkA2S31d9UCV1LxfcRco5pdcuDltM2TYQJk9ObW5X4AAABst2CHMNANjeuRBjp8ikGxrqKatncqn0mWv/NHto0MX6WYANl9VFONlkXfkgbAFFum6TlrJ3ayrEiXNCtAhu4Mu5Ua3ra6qCZn5vRRrRNsP/9ntBGzWL+0W5dRLXRYZj8CAAD0VKDXHllZRNUjlR4fpVqxMSmqJY/9RE6l6R8vebH+4Okrhkf00STXqBZMZMG3muELqG2FFD1nqZ2aqrFD+4XQuWmv9RbZQVENAAAAALbLdkxyjENUAwAAAIBO7ATMHiCqAQAAAECn08my1P/WI6oBAAAAgHGIagAAAABgHKIaAAAAABiHqAYAAAAAxiGqAQAAAIBxiGoAAAAAYByiGgAAAAAYh6gGAAAAAMYhqgEAAACAcYhqAAAAAGAcohoAAAAAGIeoBgAAAADGIaoBAAAAgHGIagAAAABgHKIaAAAAABiHqAYAAAAAxiGqAQAAAIBxiGoAAAAAYByiGgAAAAAYh6gGAAAAAMYhqgEAAACAcYhqAAAAAGCcLYlqAAAAAIBNyjmqAQAAAADyRVQDAAAAAOMQ1QAAAADAOEQ1AAAAADAOUQ0AAAAAjENUAwAAAADjENUAAAAAwDhENQAAAAAwDlENAAAAAIxDVAMAAAAA4xDVAAAAAMA4RDUAAAAAMA5RDQAAAACMQ1QDAAAAAOMQ1QAAAADAOEQ1AAAAADAOUQ0AAAAAjENUAwAAAADjENUAAAAAwDhENQAAAAAwTg5R7f8BAAAAADYt56gGAAAAAMgXUQ0AAAAAjENUAwAAAADjENUAAAAAwDhENQAAAAAwDlENAAAAAIxDVAMAAAAA4xDVAAAAAMA4RDUAAAAAMA5RDQAAAACMQ1QDAAAAAOMQ1QAAAADAOEQ1AAAAADAOUQ0AAAAAjENUAwAAAADjENUAAAAAwDhENQAAAAAwDlENAAAAAIxDVAMAAAAA4xDVAAAAAMA4RDUAAAAAMA5RDQAAAACMQ1QDAAAAAOMQ1QAAAADAOEQ1AAAAADAOUQ0AAAAAjENUAwAAAADjENUAAAAAwDhENQAAAAAwDlENAAAAAIxDVAMAAAAA4xDVAAAAAMA4RDUAAAAAMA5RDQAAAACMQ1QDAAAAAOPkG9Uezx4RQogjs49zLbY7Gys3zp5+82GXey+MCXG4qt279clvq6fLA0VLCCFEoTR0bPrGykbawh9WDwsxtpBm09bq3epzP7kj7xhzWlvgYfWwiMpa41g9qePCmLpS8w/WpK3SnkywClFyOZuqYM/vBwAAAGyTXKPa49kjor9UssT+Cw/yLLc7CWFrE3u3lqvDlhBW8cCxU5OTk5Onjh0oWkJYAxMLa8odwjJEteCmvYpqe0/9oi65Wj3z7IAlhHX0Sh6hvCd1XBgTQvR/94eTnhEnepdOXvuklfFkklo0t6jW8/sBAAAA2yTPqPbgwn4hRubePmmJ/hcXW8k7bK0ti2rr109awhquLktVbK3eGO0XaTNq11GtB3RpYK0+2i/E3vP3czrEdtdxYUxE69VarY+VhLCGL2e8b7JUIceoBgAAgCdXjlHt/vm9Qhy90rSTzMnr66H3W5/Up+3hJ2EVDxybrntDF7Fvrd6tnlC/ZaepRqN6Yl9BCFEolc+6U/ICs/bcXnFMUZ1OZ63hvGkVvzu9uBYT1TRd7fvn9wrrf73lDTNtrNzQVUrub0f73v4rgUl6YwuRQ7dW786eLpcK9uy98unZxlqwkPon9bP2+1bxwImq/3ZnrVE9MeTuOXSiendVk621waJVHxWpahF/MrF19Hf8btESQhT2nag21jobD2a9tjobaMaNlRtn1RckTBnVOp1Oa/HFfiH6p5YUtddcNHUVxuYXzu4rCFEonfrN59FRtYu/dSplFQ/Il79H9wMAAABMk1tUs3u4R680O53WwpgV/sKaM2ewcOh09Wr9avX0oYIQpYk76/FvdR6++UxBWAPPTs/V6/W56WcH5OGshTEh+kslq3Do7Fy9Pjdd9sdD1pd/V3/piDNx73fL60lFtZamSkJYA89dsE+hODysH/loLb7YL6zh89p041eqVJ6eq7uV8g+XNqr9+d/rvzi1V4gjL9Xr9X//c6hrvrYwVhLCOjhaverWSJTGnDmYD6uHhSiVSoHL6gVo+93ymerVev1qdfSgpR8Q1Ea1++f3hiJNfFTTnExsHYM72k3cf/T4cMFpqeCZr985O2A5N5J3J41pJqXqoppTsaGLy+Haay+augqWVTg4MVe/Wn1t4XG0HMuyLLkS7h3fm/sBAAAA5skrqtnxbOTauv8POavZI20j17xec+v++f2F0qnffJ741v6XGv7iFa375/d7HcyFMSECExHXro1I43mBcbH4oh7PHgl06lvLFw/rOvKdTqeztjh10B0tOzUzV1/68IvgAhuPZ48I0T9a9yu1Oi+dW9qoFnlb6prb2fjwRX8a5kbjpf1ecLHHFaW37UaxS3pYPSzEaN3bc23+uFUsX1pW1VUV1Ta++PDGxEFLiP3n70fDZ/TEY08m7vtX4R3Xr42IwIW9f36vEMOXH3U69gRca2ReCtBr10a0X5zUR7XmlaMicKXsrWIvmqIK4vi8HxKjlfIunXMrBgcSt/d+AAAAgIFyimqhSY92t1HqI9+ZsIQ1tqAahdK/1aqPClH8/qvyghb1l4543eiFMRHas7UwZglrwl4fT45q8UWtXxsJf+tq/dpI/PeJWut/vF09c8yZDufMzXPH2ZpXjka+xmVfEzvM5hHVlqa84jyPZ4+4x31YPewNDUX2tZvr4MT8vcfrSd8pVK8Aac8TvZNq2l7CySRGNXnHhTERyEut+qi78fLFISGGzvxSbuJfnNqra0Z9VLPfikS12IuWtNpHpFLBQefli0Nu4uzF/QAAAAAD5RPVHs8eCc6mcr7w4y4u8ujysK5XGPOWLiS4nVrF18nk7qf8dnxRD6uHI73cpan+lP3Y1vpfP1wKzjdTFRgZoNlkVFsYUyzq4YeM+LTQWr7y3IDlRK6B8unqzQ9iv6vmrQBpz5wr/o/KwuNWZKv4qKY9maSoJu8opSj/Bf+CqEPlhGoRfX1Ue3R5WBXVYi9a5qgWGs5aGHMnk/bkfgAAAIB5colqzuPUFJ1kecJfTB7L/Fan09FHNWc+XCSqaYtSJav75/dm7Mdu3Jnodw5ufFSzT/jTezf9gcHQkpb63dyv4QW+BGZKVEs/oU8f1Zam+slLd7wAAAs6SURBVPUnoLloeUQ1afiLqAYAAIA8otqDC/uFsI6+EphdWJ/7p/3Cm+elmOV4Z6JQHHr1Xsxb9heTwonH549EuFoLY5b3khzV4ovKNgHyvbMFdVGPZ484++gnQNpz9yIx5uiVplz9NN/j0k54s2e5Zemat9b/8Orh8LWM281ZwEIKd/G12Jaodv/83iwPD4hfAdKdvJv2omWOaoFrZU+AtF8y4H4AAACACXKIavZKgNEHqdljbXafN7J2yFp9tN9OaElvBVZKaC1fPCwKB1691+m4DzH2l5hoPZo9Kj3SLbqsiLao5i+PW4GS7IEjdT/WLqp0cn4lsJTIWuOlw9510C0rcvyXzU4n2N9uXjkauHz288q6X0aiNP1+aMvIvl8tnBkoluQWW5s/niWq+WHNff5YfC22JarZfzKQL3pnrT7abxV/+JvPFfWKfa6a92jvtBctc1STW86+mM5fNXpwPwAAAMBEm45qkRVEfHamsXudwcXrLzw3YHn9/OS37FXN63MzI4Hl150vJzkL8M+dDa3NvjTVL8T+sTl7sf74oux3AyVpF51wu9bOApCTk5OTp5znp/lHT79Yf+fxlaPelnPTzw4Uhoeld+2e+9HzV7tZnF3XNV+/M1ESonBoZGauXq/PzXz/oKV97LOuR29HCG+v2Fok5AR9HTNFNbdd7Ic3XK2eCT6QIcQO+t/94aRnxHkimTy1M+1Fi2mmSH0fVg8HnkAQOs0e3A8AAAAw0Gajmh3HgsvZeYKLi0jPuS6UyoEnF6d7K/ysZrvbPr84XS4VIk8S7nRay1fsZ2O7y0rEFNWRH55cKJXP1n8xGtuP3Vi5MTNSHnTXfyyUho5N3wgOswUfgX3iwm/Vj8DuBJ6+feBEtbG2MCa9u7Y4bT/+2VsAxT+t0COPz84/UGUM1Sut1Tsz3vKV8sPDI/Q9eiesuSNQMbVIygnaOmaLap1OZ63hXRCrOBBTLcUqJFZxoDwyE9wj9UWLa6aOIqqN1ZeveI/xPj3/QD5oD+4HAAAAGCe3R2D3QMZ1JAAAAABgpyCqAQAAAIBxiGoAAAAAYByiGgAAAAAYZydHNQAAAAB4QhHVAAAAAMA4RDUAAAAAMA5RDQAAAACMQ1QDAAAAAOMQ1QAAAADAOEQ1AAAAADAOUQ0AAAAAjENUAwAAAADjENUAAAAAwDhENQAAAAAwDlENAAAAAIxDVAMAAAAA4xDVfM1ms9enAEfubbFrG3crKr5rL+Z26u1F5rbZjN1TUwDAVsshqjUqQlQawX+Lcq3pvdCslQP/3iaNSoajyucYrtDu1agIIUKtmUeZ8Vc31BabP7jhjZv9lPw94q9PzE+et2PWo+feOqGzCnPPLfdjdSeX+yexkK25Y5/Y22Yz8joZr5w0bderK2Dgbz8AQIIcolrog71REZVKRfpA6FFSy8bw3nxvbMmFyBbVcmF4424mqsVLcyU30+fOXeRkGhXhZwMTfos8GVEt3o67bYxi8m8b084HAJAsjwmQzVrZ//3frJXLtWZDympyH6tZK7t/Ldd9bkubSH9Tb9bK5VqtIu2ZWJT8B+ByreFtHt1aKqrScD7Pasrt0x3UP1bwsqQ6f29gwd7eLiHt7spXs110uZcRroV/hv5LoT/VK+quq5SyraNtkdiImsKjVdts46ZuHfU9rLs+MaeUeGj/hyty9qGKh04yODxS05xVuJV1raO7eok/eoo6BtvP6/im+DWivuwptk78sQjUKOP9oyukIb0bqPM23LFPxG2jae4sv2066X7D+PvLreb98ItyremUk7Lt8jqo7gLGXFjFjZfmNgIA9Eou31ULfpyUa83wB0zk80X7V9bAJ32jIuTPplD6SFGU36vwSvX/TB+pQjCkRLdPe/5C89kaTk9SZ8F9K3S0jNWXL573/8oXI3VXnYzub7AxUU1bd9W1jWvryFwpXaPorli4gnk1borW0dVLd302c3+610fdyvJe0ZNUXNjQWalaWdk6cfdzUtXCVzga1dz7ODrBTP6H5rInX5nE30WbuX+0hTg5SD3Kkdcd+wTfNnE/Zaof0pjt035M+B9ljUq5XJbCVlNzf8b81srloLp7IOlulC988gcEAKCX8llWxP8zaaPifV75H1yqD/HQYJy2XFXXKl1RwT8AK3oPMv2sFWXmiTto+O+7kY5adFd3M/nPzdq0oz8TZdUSP311J9NVVFPUXXdJtKVqo5q6UdRXLFzDHBo3Zeto66W7ECnuT+01VPW51RUPnaTmwiaflap1tLdQmh+9mHrKvVddTTW/RrQtqzyOprkVBWe8f+IKiYmu+d2xu+K2yfoLQXUpUv4YuifuTvKP/1NCzK/KPA6a9q6TTzJy4xHPAMBsOa0A2ah4HwX+H1rdzoD/WR2h6anYf2uUJ6oEPtXTFZVzVMt40FCxwV5JaCt3M31oSll9/x2pGOWL+lPWjNIFd4jvf0QqFX45XMloW6eMavorJsuncVO2jr5eunsj+f7UX8NAB1HZ9HKfO9i3DkagtGelah3tLdRNVNM0gnOMpJZS306hK5O2uZMGcxLvn5hCVMdUHnxzd+wTftuEmzvpF0LMT2WagzqfZo1KudawP+C8z7cti2r6g8bddep7Q3njJX1AAAB6Kqeo5nxCNoJfUas0/NG1+KEHj/NZEpqvocgqqYrKO6plOGio2LyjWuyZuB/IgY2UL8acTEd3qXKLanFt3YOoltS4qaOarl5bGtWCx1b0Gg3vcyduIUU1dUvpLrviyqRt7kxRTVVgQiHh66bcb3N37BN726ibO36KQOxPZcqPCftXmvth53++bV1U0x40413Xib/xtB8QAICeyuu5as1a2fubn6NREZWa9EpyRy3yEaLrDacpKu+olvqg4V57pRE5f12HIlh9afZOF9VXfl6rXozv3WSLaqq66y5JbFunjGr6K6ar9SYaN33rqOsVcyGSGle3q7qzH/gDQYo+d6azUrWO9hbKP6ppN9Fedpl78imbW5MQMtw/CYWk6Wxv7o59Um8bXXPrfkjjfirTf0x0mrWy+6HWtBdcifymyj2q6Q+a7a7rZLzxAABGyO0R2I2K8L70bGvWysFXmrVycEKT+i977meMMy/D//yTPnxSFJV7VEt7UH8iibSJ6vzdf4c2k09DM26jOZPw1dO/GKm76mRieg7e63YjyX+3VtddflnRH4u0ddqopr1i4RPOo3HTtY62Xrrrk/b+VFxDZYDxTzNtnzup1eRWVraO7hbagqiW9uYXcT8UqX+WIw2c9f5JKiTdnbaZO/bJvG3S/vZI/G2TLTXZRbo7lMtl+fS3KqrpD6q7B5LvxoRPDQCAMXKLavbHSeBzRjHG4XxIxky0sD9d3Znzgb8CZiwq818u3Y/1mO3THFRUKpXIJrHnHyip4e9cCyypnab60tXzt1e+qKx96GT0HWfpJBvyrCpl3eXyA8tna9o61BaJjai8YqrqbbZxdcdSjQ4o6qW7PinzjPIaetdH3cpSxWNnsjX8sqV6K1tZ2TodzS2krVpD3VBpolonxc0fuJ0093+K5vY3Cdxs2e6fpEKUISu/O/aJum1kuubW/ULQ/1RmSU3hX1NyM8ppNb7t8jpoR38PKF9X33i6Tw1CGwCYIL+ohk4nzcBBtsJ20qdlrnXv+hS27YplPpYB1wfYVXbYr1AAAMKIavnaXHc88Af2HTcZpRdRZDuv2GaPRVQDttjO/hUKAEAYUS1fm+2Op5nSZKreRJHtvGKbOxZRDdhyO/lXKAAAYUQ1AAAAADAOUQ0AAAAAjENUAwAAAADjENUAAAAAwDhENQAAAAAwDlENAAAAAIxDVAMAAAAA4/x/QAmI31ll5fMAAAAASUVORK5CYII=" alt="" />
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAABIUAAADMCAIAAABiNoRNAAAgAElEQVR4nO3dXWxU54H/8bnzBRdRL7iK9uKvatWLatWL87/IyDNCYyUmBoUuCVo2kyBBQ9KSbMNuQydgiq1QpRnbwLoYExYMeE0CS22IzUvBuIANbAjRjF9i40B4GeeFLhAvauqApkKjsxdz3t9nPOYZ4PuRL/A5z3nOc+YM0vPz85znhGQAAAAAgAgh0Q0AAAAAgMcUeQwAAAAAxCCPAQAAAIAY5DEAAAAAEIM8BgAAAABikMcAAAAAQAzyGAAAAACIQR4DAAAAADEKzGOfX/5JMhUy/1RsHPxx23jX1fsz08IAzoyFksMNn8uyLHd/kNL+HdDYoeGQ7aL0nw8mXA4p7CxFGDs0HEqOdc/sSQAAAAAIU1Qe2/zZq3svaj8vtg3NSqZCTaP7bs1MG31NL499de6SfjltQ6Fk6odt+tW92vs/9kPIYwAAAACmr6g8Zhsyuvmn0Ypk6ocfOUSXB8Gax0b33JlOVaklZ0rXtmkgjwEAAACPttLkMTmbWWzYnr2a+VXb8OymVCiZCjWmn9xmnM14/4v+8aea0xXqrv1f/M1Qz2TXHz77+43pUDJVsXGo6g+ZL7Kyf52GPDbSMxxq/vx8fvutbxralUNmbRr+x0Nff52VfTjlsXwu2nVm/P81pUJNgy+e/KtlfOxm6srL2wafaEyFkqlQ0+CP2y+fvWU6tutq5hfbBmclU6HG9N8b9qrXNZTfJe3LfNGvX4s1j33/7f59I+rljLz8x29u+l0NAAAAgHJWojyWuVKZTFV8+KUsy/KtawsaUxXNI786lunsv9qwd2R2MhXaNH4yK8uyfOfM2A+S6R/tvNTan+k8Nv7UplSocXRffjgre6vh/XQomf6HPZd3919t2DM8K5ma/eGXd/zqNOaxbP9YaMeVr2RZlm83bE2FNo28duhqZ//Vho6hQCN4rnksXdE09MqxzO5Dl7szpvmK2cHPf5hMzWodaziR6ey/UrdzqCKZqthx5Zp+7ODsTaaLqmi/rgzg3ZpYsikVahp++dDVzmPj0eb07E2Dznnszpe/aE4rJbUP54MJIhkAAADw8Jp+Hrt/5/pXte+nQ8n0kjP3ZFm+1js6u8n0bFXqoyHTfMLWyyPqrmzq879rGnztTFaW5TunRiuS6QV/mtJqPn9gaNamsQ//x6dOYx6zNHVxvzYuN7VrZ/qJbV8Me1+gax5LzT0xZd6inPFk59ATm8a69RmS9/a1p7UclT/2Jz231JG5+90faHvvn9iXDjUON1xUG5mPZ055LPXRUKhxdNc3+qIpN/80WpEcqv/M+3oAAAAAlK8SrK8YSqZCyfSP9n/lOlZzZiyUHKodlGUlRw1WfzQxePtvllJHP0yHGse6facU2up0zmN3ri9sTFVsubhr8H/vBKxT9shjpvq91/MYOzSsPcOWL/nuRcdjv/7lxlRo9zXjw24jPcNOeezWu62pUOvFnf2ZTu3n6NjfJVM/OXQ78LUBAAAAKC8lWF+x7tjEx9fvWSLP97f/MvhJpvPYpVd3K488KSHn1le/ak3nU9ysTcNVf7hyUnl+bHLT+6nQ1stj7id3rdMxj8n3R46PPtmoPW821nD6z9N4fsw7j92/c+Pbj89ldh8af7Ft6IlGyxiXy7HZzOJk6sc95lUpzzg+PzaxxGU5fmWOKAAAAICHUImeHzPSE1f6ieahH7eN1X0wYg459++Mf9V6cFRZ1SM5uOTMlPK4l1se867TOY/JsizL39/5+PTl19SFQCrevzziHckKz2PZi1fmNyttm/37oad2j/9y91CgPHbn2oKC8pj3xw4AAADgYVPyPHb/xL50KDn860/ufK9uuvOnUbdF5L+fuLZ4Yyq/AofDfMVzF2dtHH5n0K9Ojzymyd775KPhUDL9y088ixWcx+5s+Y9UaOPo9nF9hPD8gWB5zGm+orG8IY/dqG1O6etGAgAAAHgklDyP3W7YalqxQ87+ZdfutBpybm7YPjjrP5S1B2VZlrPf/LpZyWO29TymujryCc27Tuc89tczF5/cOLjivGEBjBOfzUAem1iSTIU6MnqK/P6bX28ONl/Rvp5H9kat9VjDeh7J9OJ+fU2Rm/1jP2hMLzr5V8/rAQAAAFC+Sj8+dnL/YCiZfnLXpd39mc5j41Wb0xVN6Qo15IwdGa5Ipp/cfrHhRKbzxOXXtg2GkoOvnLsny9p694NP/eFKZ//V+l2DFcn0/z9y27dOl/U8vnxlUyrUNLzg4JXO/kzrwc9+1JiqeP8Lj+fT1KoKGx/btiMdSqb/Yd+Vzv7M7kNj0sb0rKZ0sDwmy7euL2xS17s/cWl+c7qiMe2Yx9SlF/Mnutqwd+TJxgDTLwEAAACUsRl4fiw72aW/tnj4Hz+a+PzqlZj+7q+/pU+MqU+OpZ9oGW349C9Z47Hq+6BnbRr5Rf9kNkidLvMVs998Wae9Qrpp8Kl91z//3lrGqoj1PG5909CeX8Mj/UTzyC9O/Pnr8+M/SKYXnrrnf6wsZw2vipb2ZY45r6+onGjLHuVDqNgY7HIAAAAAlLEC8xhm2EjPcCg51sWoFwAAAPAYII8J9JdtO9Kz267oUyizt971WGQSAAAAwKOFPCbSteOfVSTTT24fb+3PdJ64/HJrWl39HwAAAMCjjzwm1t8+Pz2uPU03e9vYFuPTdAAAAAAeaeQxAAAAABCDPAYAAAAAYpDHAAAAAEAM8hgAAAAAiEEeAwAAAAAxyGMAAAAAIAZ5DAAAAADEII8BAAAAgBjkMQAAAAAQgzwGAAAAAGKQxwAAAABADPIYAAAAAIhBHgMAAAAAMchjAAAAACAGeQwAAAAAxCCPAQAAAIAY5DEAAAAAEIM8BgAAAABikMcAAAAAQAzyGAAAAACIQR4DAAAAADHIYwAAAAAgBnkMAAAAAMQgjwEAAACAGOQxAAAAABCDPAYAAAAAYpDHAAAAAEAM8hgAAAAAiEEeAwAAAAAxyGMAAAAAIAZ5DAAAAADEII8BAAAAgBjkMQAAAAAQgzwGAAAAAGIUmceyE+c7mlbEq6NhSZIkSQpHqxcuq205PDpVZDt6VkmSJC1qGSny+CBGWhbNyDlmql5P+Q/Mbtp3QpZlWc5OnGr5+e+OFt2uVT3Kr/nPRv8dAAAAgK6IPJYd37uyOuycBqTKl1ouFJMEyGMFcstjhjuxYeBGkZUfXR0uNkSRxwAAAIDACs5j2XPJ+ZIkSeEFqzvOjt5UstfUzdGzHasXhCVJkuasPFB4DngQeeyRouQxa9DJTn756eENP8/n5fDilnS2+MpLEaLIYwAAAIC7gvNYX/0c18yV7auPFRmryGMFcsljiqkLzYvDxX+i5DEAAADgQSg0j13e/pJXNz/dvFCSKmPvHFc3uOUs63bt96kLHW/FY5WSJEmVsfhbO05NZO3HreqRp0Y71yrlwtHnXm/Jl8uOH1i/7LloOL91WdNR49EO8wqnRjvXL1uYr0YKR6vjb9mfvPIt4zhfMTtxvkM/rDK2cNn6TkvNxmtRW+140U6885g+jjmnvs/jcuztUgKUznBdU6OHW2q1Y5WjO86bGus/XzE7cWrHW9qjh051AAAAAI+JIsfHwis6gvWgC8tjcxe/VB2WJKkyVlOjdtjNk+7y5ZavWhXLh6OaGjUdxOp7L7QsDlu3rj46qR5rzU03elbF1JBVU6MdE17QdE47YZAy9jx2o7d+QdhwmNqaype2OlzLau2a9YLL//NykA/Wa+Dp8o6XJUmS5ibPaZuy6V3LY2qWqtE/49jyXWq7Lu58VW1GZaympqbm1Z0XzZ+Esl1rqxRb1aMPlvrksWy6ZXHYUIvWgjf2+1wwAAAA8Ogp/PkxtUNdOW/Z+ra+T7+c9MxlheUxSZIqX9qgjg5NjXa8EctHrb6stVzsjQ5lWCc70bEiLElSOBw2be1cOUeSJGnFXjWQWXLThQ3zJUmKrTqgJcvsxIF85nh5x+XgZew5b2++PdUrO7SRp6kLO/JJyBAQHa5Fr942ruX4AXpOBDyXnCtJkrR0V0apW5lOajidPDXamX/sb37ynDUpGuue3P9GWJKkOSvaDYNpUxfeXzpHkiRp8daLLoda8li+mvDiZn3RF3Vq5Zzf9DJGBgAAgMdMMevd3+hd/7w6NpIf6Vi47N+a2o6cvWzPZgXmsTmreiaNxZRZd+E39k+ay5k77/n1AK1blUfdtGBjyU35qlYeMLV5cu+KcLS6prbnu8BlnHOe/ZrVGYRakHO+Fnly7wpLxnESII8pWUhtSGbXUkmSpEXN1jU+8uX0z9ghj33XU1tTHQ3rGVSlZD69qHcey/+6sDltraQyVrOk1bwVAAAAeOQV+z7oqatnTS8gU6PZ8291mNa7L3C+omFunSLdvFCSpPDqo8Zy1hjivGqEdaslNykzLxes7nAKksHLWOrNN9gwLKdTEpE6YJW/Fu3SNPl06bMSR8F5TIl52miZwcWti80NCb6eh+2T985jyicQW77h8Kc3p/WGNAAAAOARUGwe003dHD17pK1pRdzxeaLC8phlIMqhpHN9ReUxeWT7S9owXzhaHV/R1NZnTQmBypjq9Vop0jxi51Yy0PvMCs5jykiW8vCXWf7WWe+G29qNN69fHz175EBb079pa3sEzWPy5NG1+rvrKmMLl9W2dHlEXQAAAOCRNv08pstOnGpZbnngq7A85pQAZi6PqUv9xYyTL6Vw9J/WG5dl9C8TPI+ZWzTTeSyf/tSROt8XSPvcDafPQQpXVoYLymOybFpNUktm817fUdR7xAEAAICHWWF57Lue2upo2OvRJmVWnOUhremPj6mnLG0eU03d/LRvT0utnhLmb7gQvEyh42PqrMwZzmOW59iUqZe22ZHulRvrVldXDEer4yvWvNOy58CRs6NfTmYLnK9okJ28bB5XNT7ABgAAADwWChwfUya92dd10FhChkvmUNeWsOQx60IP2hktz4+VOo/ppi5sXOTYYo8y5nqVszo9P6asQG9+fmyG8pi6eoiWGm0fuW/lhrqVMGd69YAsy9rTckXkMUNT1aUweWs0AAAAHjOFzldUBl1ib+wdd3rm58aBlXMkSQqv6lH2KstxaL8rxfIrwtvXVzStui5rS7Trx5cujx1/p6YmVmlPlsYzBClT8PqKvmOHJchjamQML92ltV1Jg9aPWJYne1bNCUern6s78p2pcr1uy0qNtksKmscu7ny1pjoas61sHyS1AQAAAI+egp8f01+QXP3zDYe1149N3Rw927F+SXVYkqTw4q1avz3bsyq/KTmgrPGRnTiVVF4J7PT+McPLsdR3dhnrK10eU96oFV7c/N/6chLqy7CUB+CClJnu+8dKm8embl7/9PCGn+fXzDB+cLIsTx5dnW/C8hb1FW9ydvK/d1if+bOPVip3UVr07oC2UsvU1RMt6sulA4+PqXF+VedV7Wkx9ZVrxuwIAAAAPBaKWM8jO753ZbV5mXuDyufX994wFh/ZqqSvcLS6pia/QH5sef3KhQ55bPmqfM9cL2l+GXOJ11f8TzVPhKPV+jKDUnhBvXYJgcrY8tON3voFhotWD5IqX9qa9ruWwvKYu8qXWmwrZGTTW9XlIvPrLDo3TP3kpMpYTU188wXDW8DNB4arV65eMUcyvizNb33FvvULTBVpt3n5LutcSAAAAOBRV+T6itnJocMttcsW6u8fy69dfnjUYZG87PgfN7yurIxeGYu/tePURNaaOdRufHbiVMvr+SUzwtHnlq3vtFRY6vUVz3es168iHK3Ot87Uet8yjvkpO3FqR622HnxlLL6iKdi1TDOPVcZq4iuaOs5edVmtMDs51Llea5dUGVto/5BlOZve9bq6cInyJJxpWcTK2MJl6zvOT2TVBVwsL7n2Xl/xcMtb8RqfFgAAAACPgVKudw8AAAAACI48BgAAAABikMcAAAAAQAzyGAAAAACIQR4DAAAAADHIYwAAAAAgBnkMAAAAAMQgjwEAAACAGOQxAAAAABCDPAYAAAAAYpDHAAAAAEAM8hgAAAAAiEEeAwAAAAAxyGMAAAAAIAZ5DAAAAADEII8BAAAAgBjkMQAAAAAQgzwGAAAAAGKQxwAAAABADPIYAAAAAIhBHgMAAAAAMchjAAAAACAGeQwAAAAAxCCPAQAAAIAY5DEAAAAAEIM8BgAAAABikMcAAAAAQAzyGAAAAACIQR4DAAAAADHIYwAAAAAgRmF5bAIAAAAAMG1F5rGCygMAAAAALMhjAAAAACAGeQwAAAAAxCCPAQAAAIAY5DEAAAAAEIM8BgAAAABikMcAAAAAQAzyGAAAAACIQR4DAAAAADHIYwAAAAAgBnkMAAAAAMQgjwEAAACAGOQxAAAAoIzkUPZKeLvJYwAAAEAZEZ014K+Et5s8BgAAAJQR0VkD/kp4u8ljAAAAQBkRnTXgr4S3mzwGAAAAlBHRWQP+Sni7yWMAAABAGRGdNeCvhLebPAYAAACUEdFZA/5KeLvJYwAAAEAZEZ014K+Et5s8BgAAAJQR0VkD/kp4u8ljAAAAQBkRnTXgr4S3mzwGAAAAlBHRWQP+Sni7yWMAAABAGRGdNeCvhLebPAYAAACUEdFZoziXdjRFI4nosoOXRLckl8t999nx+sTBwSKP7lsdScRbR72KlPB2k8f8ZTKZB3wgAAAAHltFpgixrrQtSzw7b11V5LebzotuSy7X/XYiGt9PHpuOTHtckqS6AesWnXGfbqBOkuLtmZLVmWmPu9bnewFFHfjoGqhzu2sAAADQFJkicrlr166VpEwRzn/4QiTxZlv3v8YSz9YP3J2JUxSCPDY9A3VO+Ujf6pHHXFNQsXWSx0qHPAYAABCAd1g4vc7Qe113Wt18bXdciu++5nlokDLFOdv4TjSycffVb/evXBONtey/bdl/7+KB9tdeWFsVSURjaxe91n7g4r0gu66f3L/SeVc+Mn18urXl+acT0Ujt/KVtnZ99l8vlcrnRLfFENKL8qLHKo6pcLvfn060ti6rXRCNr5i5pP/71453HlBGreDxuyUeZ9rj7yJepkK3LX3SdhuEz5SjDFsNxtq32A51qNZ7ZPFKnHeR8vqDNsBiok+LtA1oh6wcR8OwFNckQeePt7eQxAAAAfx4x4PQ6awZTfxWZx+4O1M9NRF/rvpbL3e3eVhVJ/GzHFcPue6nWhqpI4pkX39/yQe+e1vfjTyei87Yfue29Kze4o+mZyJoFr7Tv7Ortamt/5bk10VjDllQ+R/WtjiSenbeu6unf1bf1drW1L52XiMYatg3lcrlvU8d6k8sS0Z9u3d7V+8fUt35V3etbvy4aWbPgXz7c03V4S+J3c5c0xB/zPBZvz6jdeL33bplZ6NKtdx6BmU6dxmEu05CX/ovxpPq/3cbHtBLGAqZ2D9SpjQlQs18zrKc2J8v8vws5e0FNsl0jeQwAAMCXewo4vc6Sp5R8dm231q3NxzPDBnWbpYw52Rl+M5TTz2U7sSmOdW+riiTe3PdtLpfL3e1bHTOv6nH72L/GElVvHvlaK392zwtPr/v1f33ju+uF9z7+Tj/Np03PJ6pWHrudy+XzmCFT5XJfH3kzpu01z1f0rurSwZ9FEvPf7lPbcC+1+b3o45zHVNbeu3VmoWPP3uvhsSLrNCQKa8jJtMelugGPEOjUliBz9hzDj2sN3s3wONLlgMLOXkiTmK8IAAAQgHsKMA6IOexSI5Mpa51eZ0ppjmX034ybzUVcWeYo3jte/5uocVWPI9urImtWd99zONR9190DrdHI2jf+vberS/9JLktEI9u6c7l8Hqt6u8/woNq97rfXRGPbj+RyOXMe867q9r7N0cg7TWcN57595E3ymC075YeyDKMuTuHJebbi9Ou0zUHUxdszxj2WKYD2POb5VJkxH+rjTpaaC2yGpX7rDEPD74HOXlCTrBerxjQAAAB48Ew/hsfHTCNW7nMR9VhVYB4L5tLBn0X0galcLnf3eNuzEX1Vj9FtDdHIe1uGHA712DXY+p72DJj5p2HbaM5xyY3B1ve02ox5zLuqwdb3opHNe00PvJ1dP5c85j27zZSkzMd49feLqdOcxzyfX1MDjVdxj1Ez/ey26zDWXGAzLHsc81gBZy+oSeQxAACAIgQIQTk9mLk+P2Zc+CNwHjNMVwwWy5TXjtl/1BEzY0yyKG5XLpdzz2P5tGbPY65VOeWxT5t+Sh6zZqf8r95jWT6zFYuq02u+oiOtfCHzFS1ByXsCZGHN8Di3+mtBZy+oScxXBAAAKJxXDrDQE5Y1a+njZwWNjxk32MbgHKQ3PZ+IxjY2dZlmA+5c89uotqqHw6TEU2ufXvvP/37BY9ftfZuj2jNpDvpWRxLPrjfOMrzX/faa6NxdfblczpzHvKtivqIb32e9PEaySlenfT0PvYwW/4wxw384zbwIhn1BDXUxSO+aAzfD9fr19FrQ2QtqkmkGKet5AAAABOIaAhwmE2qbDFnLsvhGUXksZy3v7Oyen0acXjh26eDPIono8x9+knNYz+PrA63P5mOY365ofF9Kq/ruyOZ44pkX9p7J5ZT1POa2HlCPvDt68DXDq8/s63m4VnX10IpY4tm3evX1PFobqshjjr13Q3xyCU4B1rMoqE6tXqf17g0H2B+9sh1or9EtGtYNGEKPY80FNcNysXV1dbbjCjt7QU0yre5vWO/eMiYHAAAAjXsKuLY7bhqyMqzvYc5jWrhSph/ax9Csa+U7PD/mG8dsS3fovt2/ck008pv64/e0hDN/afvOrt49m36/IJaoWtI5aAg/Hruqnvv9pg96u9o+fPPF2mhk3eruP+dyOSWPRRJVz214t623q60t/nQiOm9btxqq+tb/Jhr57eq2/Hr33lXl9yqr4e+s/90zpheXuSjh7S7XPIbSY74gAADAQ8ArB1jeB23NZoZUpVh32v5wmBK4tFLx3ad3x21bJfMijfZklh93Mi5tb2Be1cPw0uen1y2t772oD6gF2xWpnb+4ZcvJCXVn3+pIIvr2oePvNs5/OhGNrV20cv/J6/q8x7up7pULa6ORRNXaU35V5XK570Y625bOq41GEs/Ma6w/cGAVeQwzgTwGAADwEPDKAcjL57E+Yecv4e0mjz0+yGMAAAAPAWEh4yFCHiOPAQAAADNBWMh4iJDHyGMAAADATBAWMh4i5DHyGAAAADAThIUMBFbC200eAwAAAMqI6KwBfyW83eQxAAAAoIyIzhrwV8LbTR4DAAAAyojorAF/Jbzd5DEAAACgjIjOGvBXwttNHgMAAADKiOisAX8lvN3kMQAAAKCMiM4a8FfC200eAwAAAMqI6KwBfyW83eQxAAAAoIyIzhrwV8LbTR4DAAAAADHIYwAAAAAgBnkMAAAAAMQgjwEAAACAGI9+HstkMqKbAAAAAEyLsU9L//ZRUm55LNMel6zi7Zlp1KYePVA3jYoCnMeobmBmzgMAAADhBuoK6vcN1BXZO9S6r8Y+rfHfwZvre35Dd7b4nmz+g5luT3ig7vHqTJdjHjPfgMK/c6U5thCm/5TkMQAAgEeWOd1k2uO+Xb+i85hmxvNY+XRmSxPpHirln8eMI1vmb5P+20CdFG8f0FK9/ocEw1dKrSX/HW6v03cN1Nm+eYZjDd93tyG2THvcZxRP+Wa1q9XWDRjO4Xjax+x7CAAA8FCw9QdNPVK3nqqhG6gV8e+U5s9l7NO220axnHuthoSVP4WpRus1KXXorXXoiAbqzRqPze+sG9CjnlanustYdbw9Y5lyZvycHPvHQXrOpqBpvHRj27UGOFT8AIZ2Hpk8ZvrmquWd5isavwDW74x9RDjInyAssxWdvg3WvzlYGFvj8p0BAACAeB4DYoF6qvrx/p1S3/mKbr1WSx/YPa7IDkWs6cRYJlBv1pjHnEoVksfspzVfl3fP2a2M+UTxeNyr3hkfJSn/PGaIV95/dXDY7prHjN8367+tQ7pOEdHEftdc/qJg/L9n+o4ZgiIZDAAAoKwZ+n62ISn/nqr2q2+n1DePufVaXU7ofUHapTgHuCC9Wac8ZmiqJQ7Z85jt7NbuseHAgnvOhopN44HmhppbbWn3DCnHPOaebkqVx4wfsenjrhtwbIHnTTB9G8y3V2MbwDN/U43f4AeVxAEAADAtaufN0MdzfbImox2ldkb9OqW+ecyt12qd3hVscCFQHgvUm7Vvt5wjcB5zHpQrtOdsLGmIkOZb5XAF2oc3w/3ycsxj5ptjvPwHlcemkYGds7r9m2X6Ohr/fwWNgQAAABDPNL3wgecxp95icXks0HxFn96s0/Njsr3WkuSxAD1nh8BKHvNn/b6YI9mDyGP+Q7oWDsOvAf6i4JjH3I4AAABAOXDoKBrjU6HzFaeVx1x7rYXOVyxgPY8S5jHHeY3e8xVdOTbadRIb8xU9OT8/Zn8A0v4IZMnymGW5xIE6v3tgS+724kG+wW4JHgAAAOXCuq62oXvq1VM1dQQdhreKymOuvVZjSwL9kd/anbUXL2Uecxr3su8yDGU5lAzSc3Y42JQB1QpZz8PEZX1Fy+3P34oBraxbHjOm3+B5TDbfJP0/3IDLevemG+dYopj5ikxWBAAAKEemLrttSQ+nnqrhzUxa+QLymP/ojq0pGf18vuvdW+pxjB8lzWPm2GXelbF+UK6fdoCes+F+ZMwN0vbUsd49AAAAAAjyIOYkeiGPAQAAAHh8eMyXFIA8BgAAAOBxEny1/JlHHgMAAAAAMchjAAAAACAGeQwAAAAAxCCPAQAAAIAY5DEAAAAAEIM8BgAAAABikMcAAAAAQAzyGAAAAACIQR4DAAAAADHIYwAAAAAgBnkMAAAAAMQgjwEAAACAGOQxAAAAABCDPAYAAAAAYpDHAAAAAEAM8hgAAAAAiEEeAwAAAAAxyGMAAAAAIAZ5DAAAAADEII8BAAAAgBjkMQAAAAAQgzwGAAAAAGIUn8cAAAAAANNUTB4DAAAAAJQKeQwAAAAAxPIFf6EAAAAdSURBVCCPAQAAAIAY5DEAAAAAEIM8BgAAAABi/B9/72XDH3PoUgAAAABJRU5ErkJggg==" alt="" />
118. Pascal's Triangle
118. Pascal's Triangle的更多相关文章
- Leetcode#118. Pascal's Triangle(杨辉三角)
题目描述 给定一个非负整数 numRows,生成杨辉三角的前 numRows 行. 在杨辉三角中,每个数是它左上方和右上方的数的和. 示例: 输入: 5 输出: [ [1], [1,1], [1,2, ...
- LN : leetcode 118 Pascal's Triangle
lc 118 Pascal's Triangle 118 Pascal's Triangle Given numRows, generate the first numRows of Pascal's ...
- leetcode 118. Pascal's Triangle 、119. Pascal's Triangle II 、120. Triangle
118. Pascal's Triangle 第一种解法:比较麻烦 https://leetcode.com/problems/pascals-triangle/discuss/166279/cpp- ...
- LeetCode 118 Pascal's Triangle
Problem: Given numRows, generate the first numRows of Pascal's triangle. For example, given numRows ...
- [LeetCode]题解(python):118 Pascal's Triangle
题目来源 https://leetcode.com/problems/pascals-triangle/ Given numRows, generate the first numRows of Pa ...
- leetcode 118 Pascal's Triangle ----- java
Given numRows, generate the first numRows of Pascal's triangle. For example, given numRows = 5,Retur ...
- Java [Leetcode 118]Pascal's Triangle
题目描述: Given numRows, generate the first numRows of Pascal's triangle. For example, given numRows = 5 ...
- LeetCode OJ 118. Pascal's Triangle
Given numRows, generate the first numRows of Pascal's triangle. For example, given numRows = 5,Retur ...
- 【LeetCode】118. Pascal's Triangle
题目: Given numRows, generate the first numRows of Pascal's triangle. For example, given numRows = 5,R ...
随机推荐
- PHP中的位运算与位移运算(其它语言通用)
/* PHP中的位运算与位移运算 ======================= 二进制Binary:0,1 逢二进1,易于电子信号的传输 原码.反码.补码 二进制最高位是符号位:0为正数,1为负数( ...
- vc++6.0各种报错合集(附:VC++6.0调出打印窗口的方法)
背景: 由于VC++6.0对于现在的我来说,只是一个工具,暂时没有太多的时间分配到这块去深究它,由于不明其原理,因此也只是在此把错误积累下来,以备下次相同错误出现时能快速排除,节省时间. 正文 一.出 ...
- LR学习笔记---参数设置 (转 温故而知新)
LR在录制程序运行的过程中,VuGen(脚本生成器) 自动生成了包含录制过程中实际用到的数值的脚本,如果你企图在录制的脚本中使用不同的数值执行脚本的活动(如查询.提交等等),那么你必须用参数值取代录制 ...
- CSS3属性选择通配符
CSS3增加了更多的CSS选择器,可以实现更简单但是更强大的功能,比如:nth-child()等. Attribute selectors:在属性中可以加入通配符,包括^,$,* [att^=val] ...
- php运行出现Call to undefined function curl_init()的解决方法
解决方法如下: 1.在php.ini中找到extension=php_curl.dll,去掉前面的分号;,然后将php.ini拷贝到c:\windows. 2.重启IIS服务,或回收应用程序池即可.
- Error 0x800704cf
重装了系统,改过网络配置,结果共享和打印机连不上,显示Error 0x800704cf 在本地连接的属性里将"Client for Microsoft Networks"勾选上就可 ...
- BZOJ1861——book
就是给你一摞书,然后又询问第k大,编号为x的书是第几大,然后修改书的位置 splay模板题...然而我还是不会,,,又遇到lrj的书的坑了,rj的书里没有father,顿时弄得我ask不会搞了 注意合 ...
- EditorGUILayout.EnumPopup 枚举弹出选择菜单
http://www.unity蛮牛.com/thread-25490-1-1.html http://www.unity蛮牛.com/m/Script/EditorGUILayout.EnumPop ...
- mac 搭建APK反编译环境[转]
APKtool 用途:获取mainifest.xml res等资源文件 下载:http://ibotpeaches.github.io/Apktool/install/ 使用:apktool d te ...
- devstack两次以上重装提高成功率的方法
1) /opt/stack/requirements/ git reset --hard 2) rm -rf /usr/local/lib/python2.7/dist-packages/*