java并发:线程池、饱和策略、定制、扩展
一、序言
当我们需要使用线程的时候,我们可以新建一个线程,然后显式调用线程的start()方法,这样实现起来非常简便,但在某些场景下存在缺陷:如果需要同时执行多个任务(即并发的线程数量很多),频繁地创建线程会降低系统的效率,因为创建和销毁线程均需要一定的时间。
线程池可以使线程得到复用,所谓线程复用就是线程在执行完一个任务后并不被销毁,该线程可以继续执行其他的任务。java.lang.concurrent包中的Executors类为我们创建线程池提供了方便。
二、Executors的简单使用示例
此处我们先来看一个简单的例子,如下:
package com.soft;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors; public class ExecutorsDemo { public static void main(String[] args) throws InterruptedException, ExecutionException {
// ExecutorService executor = Executors.newSingleThreadExecutor();
// ExecutorService executor = Executors.newCachedThreadPool();
ExecutorService executor = Executors.newFixedThreadPool(5);
Thread.sleep(5*1000);//方便监控工具能捕获到
for (int i = 0; i < 10; i++) {
final int no = i;
Runnable runnable = new Runnable() {
public void run() {
try {
System.out.println("into" + no);
Thread.sleep(1000L);
System.out.println("end" + no);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
};
executor.execute(runnable);//ExecutorService有一个execute()方法,这个方法的参数是Runnable类型,通过execute(Runnable)方法即可将一个任务添加到线程池,任务的执行方法是Runnable类型对象的run()方法。
}//End for executor.shutdown();
System.out.println("Thread Main End!");
}
}
其运行结果如下:
into0
into3
Thread Main End!
into4
into1
into2
end0
into5
end3
end1
end4
into8
into6
into7
end2
into9
end5
end7
end8
end6
end9
解说:这个例子应该很容易看懂,从运行结果来看,在任意某一时刻只有5个线程在执行,这是因为上述代码通过Executors.newFixedThreadPool(5)语句创建了一个固定长度的线程池(长度为5),一个结束之后另再一个才开始执行。
三、Executors提供的线程池
Executors是线程的工厂类,也可以说是一个线程池工具类,它调用其内部静态方法(如newFixedThreadPool()等)即可创建一个线程池,通过参数设置,Executors提供不同的线程池机制。
四、简述线程池的属性
五、详解ThreadPoolExecutor
上文提到可以通过显式的ThreadPoolExecutor构造函数来构造特定形式的线程池,ThreadPoolExecutor是java.util.concurrent包以内部线程池的形式对外提供线程池管理、线程调度等服务,此处我们来了解一下ThreadPoolExecutor
(1)一般使用方式:
ExecutorService exec = new ThreadPoolExecutor(8,
8,
0L,
TimeUnit.MILLISECONDS,
new LinkedBlockingQueue<Runnable>(100),
new ThreadPoolExecutor.CallerRunsPolicy());
下文详解此示例涉及的一些内容
(2)构造函数的声明:
public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue<Runnable> workQueue,
ThreadFactory threadFactory,
RejectedExecutionHandler handler) {
if (corePoolSize < 0 ||
maximumPoolSize <= 0 ||
maximumPoolSize < corePoolSize ||
keepAliveTime < 0)
throw new IllegalArgumentException();
if (workQueue == null || threadFactory == null || handler == null)
throw new NullPointerException();
this.corePoolSize = corePoolSize;
this.maximumPoolSize = maximumPoolSize;
this.workQueue = workQueue;
this.keepAliveTime = unit.toNanos(keepAliveTime);
this.threadFactory = threadFactory;
this.handler = handler;
}
(3)函数参数说明:
参数名 | 代表含义 |
corePoolSize | 线程池的基本大小(核心线程池大小) |
maximumPoolSize | 线程池的最大大小 |
keepAliveTime | 线程池中超过corePoolSize数目的空闲线程的最大存活时间 |
unit | keepAliveTime参数的时间单位 |
workQueue | 任务阻塞队列 |
threadFactory | 新建线程的工厂 |
handler | 当提交的任务数超过maxmumPoolSize与workQueue之和时,任务会交给RejectedExecutionHandler来处理 |
进一步解说:
A、当提交新任务时,若线程池大小小于corePoolSize,将创建一个新的线程来执行任务,即使此时线程池中存在空闲线程;
B、当提交新任务时,若线程池达到corePoolSize大小,新提交的任务将被放入workQueue中,等待线程池调度执行;
C、当提交新任务时,若workQueue已满,且maximumPoolSize>corePoolSize,将创建新的线程来执行任务;
D、当提交新任务时,若任务总数超过maximumPoolSize,新提交的任务将由RejectedExecutionHandler来处理;
E、当线程池中的线程数超过corePoolSize时,若线程的空闲时间达到keepAliveTime,则关闭空闲线程
(4)任务阻塞队列选择机制
(5)简述SynchronousQueue
注:此处贴出SynchronousQueue的使用示例,示例中使用了Semaphore,更多关于SynchronousQueue及Semaphore的内容请参考其他文章
package com.test; import java.util.concurrent.Semaphore;
import java.util.concurrent.SynchronousQueue; /*
* 程序中有10个线程来消费生成者产生的数据,这些消费者都调用TestDo.doSome()方法去进行处理,
* 每个消费者都需要一秒才能处理完,程序应保证这些消费者线程依次有序地消费数据,只有上一个消费者消费完后,
* 下一个消费者才能消费数据,下一个消费者是谁都可以,但要保证这些消费者线程拿到的数据是有顺序的。
*/
public class SynchronousQueueTest { public static void main(String[] args) { System.out.println("begin:" + (System.currentTimeMillis() / 1000));
// 定义一个Synchronous
final SynchronousQueue<String> sq = new SynchronousQueue<String>();
// 定义一个数量为1的信号量,其作用相当于一个互斥锁
final Semaphore sem = new Semaphore(1);
for (int i = 0; i < 10; i++) {
new Thread(new Runnable() {
public void run() {
try {
sem.acquire();
String input = sq.take();
String output = TestDo.doSome(input);//内部类
System.out.println(Thread.currentThread().getName()+ ":" + output);
sem.release();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}).start();
} for (int i = 0; i < 10; i++) {
String input = i + ""; //此处将i变成字符串
try {
sq.put(input);
} catch (InterruptedException e) {
e.printStackTrace();
}
} }//End main } class TestDo {
public static String doSome(String input) {
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
String output = input + ":" + (System.currentTimeMillis() / 1000);
return output;
}
}
上述代码的运行结果如下:
begin:1458954798
Thread-0:0:1458954799
Thread-1:1:1458954800
Thread-2:2:1458954801
Thread-3:3:1458954802
Thread-4:4:1458954803
Thread-5:5:1458954804
Thread-6:6:1458954805
Thread-7:7:1458954806
Thread-8:8:1458954807
Thread-9:9:1458954808
从上述结果看,上例在任意某一时刻只有一个线程在执行,且只有前一个线程执行完下一个线程才开始
六、饱和策略(线程池任务拒绝策略)
上文提到ThreadPoolExecutor构造函数的RejectedExecutionHandler handler参数,该参数表示当提交的任务数超过maxmumPoolSize与workQueue之和时,任务会交给RejectedExecutionHandler来处理,此处我们来具体了解一下
(1)四种饱和策略
(2)源码分析:
RejectedExecutionHandler这个接口是用来处理被丢弃的线程的异常处理接口,其源码如下:
public interface RejectedExecutionHandler{
//被线程池丢弃的线程处理机制
public void rejectedExecution(Runnable r, ThreadPoolExecutor executor) ;
}
AbortPolicy(中止策略)继承RejectedExecutionHandler接口,其源码如下:
public static class AbortPolicy implements RejectedExecutionHandler{ public AbortPolicy(){} //直接抛出异常
public void rejectedExecution(Runnable r, ThreadPoolExecutor executor) {
throw new RejectedExecutionException("Task"+r.toString()+"rejected from"+executor.toString());
} }
我们可以自己实现RejectedExecutionHandler接口,将实现类作为线程丢弃处理类,代码如下:
package com.test; import java.util.concurrent.RejectedExecutionHandler;
import java.util.concurrent.ThreadPoolExecutor; public class RejectedExecutionHandlerDemo implements RejectedExecutionHandler{ @Override
public void rejectedExecution(Runnable r, ThreadPoolExecutor executor) {
// TODO Auto-generated method stub
System.out.println("线程信息"+r.toString()+"被遗弃的线程池:"+executor.toString());
} }
七、定制ThreadPoolExecutor
(1)通过修改参数的方式达到定制目的
(2)通过自定义方式(封装各种参数)达到定制目的
示例(摘自网络):
import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.RejectedExecutionHandler;
import java.util.concurrent.ThreadFactory;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicInteger; public class CustomThreadPoolExecutor { private ThreadPoolExecutor pool = null; /**
* 线程池初始化方法
*
* corePoolSize 核心线程池大小----10
* maximumPoolSize 最大线程池大小----30
* keepAliveTime 线程池中超过corePoolSize数目的空闲线程最大存活时间----30+单位TimeUnit
* TimeUnit keepAliveTime时间单位----TimeUnit.MINUTES
* workQueue 阻塞队列----new ArrayBlockingQueue<Runnable>(10)====10容量的阻塞队列
* threadFactory 新建线程工厂----new CustomThreadFactory()====定制的线程工厂
* rejectedExecutionHandler 当提交任务数超过maxmumPoolSize+workQueue之和时,
* 即当提交第41个任务时(前面线程都没有执行完,此测试方法中用sleep(100)),
* 任务会交给RejectedExecutionHandler来处理
*/
public void init() {
pool = new ThreadPoolExecutor(
10,
30,
30,
TimeUnit.MINUTES,
new ArrayBlockingQueue<Runnable>(10),
new CustomThreadFactory(),new CustomRejectedExecutionHandler());
} public void destory() {
if(pool != null) {
pool.shutdownNow();
}
} public ExecutorService getCustomThreadPoolExecutor() {
return this.pool;
} private class CustomThreadFactory implements ThreadFactory { private AtomicInteger count = new AtomicInteger(0); @Override
public Thread newThread(Runnable r) {
Thread t = new Thread(r);
String threadName = CustomThreadPoolExecutor.class.getSimpleName() + count.addAndGet(1);
System.out.println(threadName);
t.setName(threadName);
return t;
}
} private class CustomRejectedExecutionHandler implements RejectedExecutionHandler { @Override
public void rejectedExecution(Runnable r, ThreadPoolExecutor executor) {
// 记录异常
// 报警处理等
System.out.println("error.............");
}
} // 测试构造的线程池
public static void main(String[] args) {
CustomThreadPoolExecutor exec = new CustomThreadPoolExecutor();
// 1.初始化
exec.init(); ExecutorService pool = exec.getCustomThreadPoolExecutor();
for(int i=1; i<100; i++) {
System.out.println("提交第" + i + "个任务!");
pool.execute(new Runnable() {
@Override
public void run() {
try {
Thread.sleep(300);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("running=====");
}
});
} // 2.销毁----此处不能销毁,因为任务没有提交执行完,如果销毁线程池,任务也就无法执行了
// exec.destory(); try {
Thread.sleep(10000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
我们可以看到上述代码是通过init()方法对ThreadPoolExecutor构造函数进行了一些自定义设置,getCustomThreadPoolExecutor()方法返回init()方法配置的ThreadPoolExecutor对象实例(即线程池引用)
补充:
ThreadPoolExecutor构造函数有一个参数ThreadFactory threadFactory,前文提到该参数是新建线程的工厂,此处进一步解说该参数。
ThreadFactory是java.util.concurrent包下创建线程工厂的接口,ThreadFactory接口源码如下:
public interface ThreadFactory {
Thread newThread(Runnable r);
}
JDK线程池:Executors.newSingleThreadExecutor、Executors.newFixedThreadPool等由一个ThreadFactory来创建新的线程,默认情况下为Executors.defaultThreadFactory(),我们可以采用自定义的ThreadFactory工厂,增加对线程创建与销毁等更多的控制(比如上述代码中的内部类CustomThreadFactory即为新建线程的模板)
此处简单提及一下,读者欲了解更多内容可以参考以下文章
(1)http://guojuanjun.blog.51cto.com/277646/650981/
(2)http://ifeve.com/customizing-concurrency-classes-4/
八、扩展ThreadPoolExecutor
九、源码视角
从源码视角分析Executors、ThreadPoolExecutor、ExecuteService、Executor之间的关系,此处简单提及,读者可查看下一节“参考资料”以了解相关内容
(1)Executors
从Java5开始新增了Executors类,它有几个静态工厂方法用来创建线程池,这些静态工厂方法返回一个ExecutorService类型的值,此值即为线程池的引用。
(2)Executor
Executor是一个接口,里面只有一个方法
public interface Executor {
void execute(Runnable command);
}
(3)ExecuteService
ExecuteService也是一个接口,其定义如下:
public interface ExecutorService extends Executor {...}
(4)ThreadPoolExecutor继承AbstractExecutorService,AbstractExecutorService实现ExecutorService接口
public class ThreadPoolExecutor extends AbstractExecutorService {...}
public abstract class AbstractExecutorService implements ExecutorService {...}
十、ExecutorService的生命周期
在本文最开始的那个示例中,有一句代码,如下:
executor.shutdown();
该语句并不是终止线程的运行,而是禁止在这个executor中添加新的任务,下文描述了该语句对于ExecutorService的意义。
十一、参考资料
本文仅简单阐述了Java并发中关于Executors及ThreadPoolExecutor的内容,此处贴出一些优质文章以供读者阅览
(1)http://blog.csdn.net/xiamizy/article/details/40781939
(2)http://www.cnblogs.com/dolphin0520/p/3932921.html
(3)http://www.cnblogs.com/yezhenhan/archive/2012/01/07/2315645.html
(4)http://www.cnblogs.com/guguli/p/5198894.html
java并发:线程池、饱和策略、定制、扩展的更多相关文章
- Java并发——线程池Executor框架
线程池 无限制的创建线程 若采用"为每个任务分配一个线程"的方式会存在一些缺陷,尤其是当需要创建大量线程时: 线程生命周期的开销非常高 资源消耗 稳定性 引入线程池 任务是一组逻辑 ...
- Java并发--线程池的使用
在前面的文章中,我们使用线程的时候就去创建一个线程,这样实现起来非常简便,但是就会有一个问题: 如果并发的线程数量很多,并且每个线程都是执行一个时间很短的任务就结束了,这样频繁创建线程就会大大降低系统 ...
- Java并发线程池到底设置多大?
前言 在我们日常业务开发过程中,或多或少都会用到并发的功能.那么在用到并发功能的过程中,就肯定会碰到下面这个问题 并发线程池到底设置多大呢? 通常有点年纪的程序员或许都听说这样一个说法 (其中 N 代 ...
- java并发线程池---了解ThreadPoolExecutor就够了
总结:线程池的特点是,在线程的数量=corePoolSize后,仅任务队列满了之后,才会从任务队列中取出一个任务,然后构造一个新的线程,循环往复直到线程数量达到maximumPoolSize执行拒绝策 ...
- Java并发-线程池篇-附场景分析
作者:汤圆 个人博客:javalover.cc 前言 前面我们在创建线程时,都是直接new Thread(): 这样短期来看是没有问题的,但是一旦业务量增长,线程数过多,就有可能导致内存异常OOM,C ...
- Java并发——线程池原理
"池"技术对我们来说是非常熟悉的一个概念,它的引入是为了在某些场景下提高系统某些关键节点性能,最典型的例子就是数据库连接池,JDBC是一种服务供应接口(SPI),具体的数据库连接实 ...
- Java并发—线程池框架Executor总结(转载)
为什么引入Executor线程池框架 new Thread()的缺点 每次new Thread()耗费性能 调用new Thread()创建的线程缺乏管理,被称为野线程,而且可以无限制创建,之间相互竞 ...
- Java并发 线程池
线程池技术就是事先创建一批线程,这批线程被放入到一个池子里,在没有请求到达服务端时候,这些线程都是处于待命状态,当请求到达时候,程序会从线程池里取出一个线程,这个线程处理到达的请求,请求处理完毕,该线 ...
- java 并发线程池的理解和使用
一.为什么要用线程池 合理利用线程池能够带来三个好处. 第一:降低资源消耗.通过重复利用已创建的线程降低线程创建和销毁造成的消耗. 第二:提高响应速度.当任务到达时,任务可以不需要的等到线程创建就能立 ...
- java线程池和五种常用线程池的策略使用与解析
java线程池和五种常用线程池策略使用与解析 一.线程池 关于为什么要使用线程池久不赘述了,首先看一下java中作为线程池Executor底层实现类的ThredPoolExecutor的构造函数 pu ...
随机推荐
- SSIS技巧--优化数据流缓存
问题 我们经常遇到一种情况,在SSMS中运行很慢的一个查询,当把查询转化成从源到目的数据库的SSIS数据流以后,需要花费几倍的时间!源和数据源都没有任何软硬件瓶颈,并且没有大量的格式转换.之前看了很多 ...
- mysql 5.5多实例部署【图解】
mysql5.5数据库多实例部署,我们可以分以下几个步骤来完成. 1. mysql多实例的原理 2. mysql多实例的特点 3. mysql多实例应用场景 4. mysql5.5多实例部署方法 一. ...
- Redis基本配置
# redis 配置文件示例 # 当你需要为某个配置项指定内存大小的时候,必须要带上单位, # 通常的格式就是 1k 5gb 4m 等酱紫: # # 1k => 1000 bytes # 1kb ...
- Js 关于console 在IE 下的兼容问题
程序员在开发代码的过程中,使用console作为调试代码过程的一种手段. 发布到测试生产环境,发现IE8 出现加载错误.使用开发者工具调试,发现可以绕过问题. 通过网络搜索和在项目中进行修正. 以下办 ...
- C++ 中指针与引用的区别
指向不同类型的指针的区别在于指针类型可以知道编译器解释某个特定地址(指针指向的地址)中的内存内容及大小,而void*指针则只表示一个内存地址,编译器不能通过该指针所指向对象的类型和大小,因此想要通过v ...
- 理解 Linux 网络栈(3):QEMU/KVM + VxLAN 环境下的 Segmentation Offloading 技术(发送端)
本系列文章总结 Linux 网络栈,包括: (1)Linux 网络协议栈总结 (2)非虚拟化Linux环境中的网络分段卸载技术 GSO/TSO/UFO/LRO/GRO (3)QEMU/KVM + Vx ...
- ac自动机 模板
自己写的0.0 #include <queue> #include <cstring> #include <cstdio> using namespace std; ...
- 关于using关键字
使用C#访问数据库资源需要如下几步: SqlConnection con=new SqlConnection(str); try { con.Open(); //略 } catch(Exception ...
- 【Unity3d】Ray射线初探-射线的原理及用法
http://www.xiaobao1993.com/231.html 射线是一个无穷的线,开始于origin并沿着direction方向. 当射线碰到物体后.它就会停止发射. 在屏幕中拉一个CUBE ...
- LinkedList链式集合
LinkedList类是双向列表,列表中的每个节点都包含了对前一个和后一个元素的引用.LinkedList的构造函数如下1. public LinkedList(): ——生成空的链表2. publ ...