POJ 1815 Friendship(最小割)
id=1815
Friendship
Description
In modern society, each person has his own friends. Since all the people are very busy, they communicate with each other only by phone. You can assume that people A can keep in touch with people B, only if
1. A knows B's phone number, or 2. A knows people C's phone number and C can keep in touch with B. It's assured that if people A knows people B's number, B will also know A's number. Sometimes, someone may meet something bad which makes him lose touch with all the others. For example, he may lose his phone number book and change his phone number at the same time. In this problem, you will know the relations between every two among N people. To make it easy, we number these N people by 1,2,...,N. Given two special people with the number S and T, when some people meet bad things, S may lose touch with T. Your job is to compute the minimal number of people that can make this situation happen. It is supposed that bad thing will never happen on S or T. Input
The first line of the input contains three integers N (2<=N<=200), S and T ( 1 <= S, T <= N , and S is not equal to T).Each of the following N lines contains N integers. If i knows j's number, then the j-th number in the (i+1)-th line will be 1, otherwise the
number will be 0. You can assume that the number of 1s will not exceed 5000 in the input. Output
If there is no way to make A lose touch with B, print "NO ANSWER!" in a single line. Otherwise, the first line contains a single number t, which is the minimal number you have got, and if t is not zero, the second line is needed, which contains t integers in
ascending order that indicate the number of people who meet bad things. The integers are separated by a single space. If there is more than one solution, we give every solution a score, and output the solution with the minimal score. We can compute the score of a solution in the following way: assume a solution is A1, A2, ..., At (1 <= A1 < A2 <...< At <=N ), the score will be (A1-1)*N^t+(A2-1)*N^(t-1)+...+(At-1)*N. The input will assure that there won't be two solutions with the minimal score. Sample Input 3 1 3 Sample Output 1 Source |
题意:
给出无向图,1表示有边,0表示没有边。如今要消去一些点,使得给出的A,B两点不相连,A和B不校区。问最少消去多少个点,并升序输出方案,有多种方案则输出 (A1-1)*N^t+(A2-1)*N^(t-1)+...+(At-1)*N最小的方案。
分析:
无向图中消去最少的点使两点割开。能够使用最小割求解。
将一个点拆成入点和出点,之间连一条容量为一的边。
图中原有的边依照出->入连一条容量为无穷大的边,A的出点为源点。B的入点为汇点。求出其最小割即为要消去的点的数量。
详细方案的输出看上去比較复杂,细致分析实际上是一个N进制数。使这个数最小,就是其“字典序”最小。
我们从小到大枚举每个点,假设将这个点(这个点拆出的边)去掉后的最小割小于原最小割,那么这个点(这个点拆出的边)属于最小割集。如此便可求出最后的结果。
那么是不是每一个点都一定要枚举吗?我们考虑例如以下命题:最小割集中的边是满流边;其逆命题:满流边是最小割集中的边,别想了,这显然是否定的;其逆否命题:非满流边一定不属于最小割集,这才是我们要的命题。也就是说假设一个点拆出的边不满流,那它一定不构成最小割,所以这个点我们根本不用check。
#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<algorithm>
#include<ctime>
#include<cctype>
#include<cmath>
#include<string>
#include<cstring>
#include<stack>
#include<queue>
#include<list>
#include<vector>
#include<map>
#include<set>
#define sqr(x) ((x)*(x))
#define LL long long
#define itn int
#define INF 0x3f3f3f3f
#define PI 3.1415926535897932384626
#define eps 1e-10
#define maxm 200007
#define maxn 404 using namespace std; int fir[maxn];
int u[maxm],v[maxm],cap[maxm],flow[maxm],nex[maxm];
int e_max;
int iter[maxn],q[maxn],lv[maxn]; void add_edge(int _u,int _v,int _w)
{
int e;
e=e_max++;
u[e]=_u;v[e]=_v;cap[e]=_w;
nex[e]=fir[u[e]];fir[u[e]]=e;
e=e_max++;
u[e]=_v;v[e]=_u;cap[e]=0;
nex[e]=fir[u[e]];fir[u[e]]=e;
} void dinic_bfs(int s)
{
int f,r;
memset(lv,-1,sizeof lv);
q[f=r=0]=s;
lv[s]=0;
while(f<=r)
{
int x=q[f++];
for (int e=fir[x];~e;e=nex[e])
{
if (cap[e]>flow[e] && lv[v[e]]<0)
{
lv[v[e]]=lv[u[e]]+1;
q[++r]=v[e];
}
}
}
} int dinic_dfs(int _u,int t,int _f)
{
if (_u==t) return _f;
for (int &e=iter[_u];~e;e=nex[e])
{
if (cap[e]>flow[e] && lv[_u]<lv[v[e]])
{
int _d=dinic_dfs(v[e],t,min(_f,cap[e]-flow[e]));
if (_d>0)
{
flow[e]+=_d;
flow[e^1]-=_d;
return _d;
}
}
} return 0;
} int max_flow(int s,int t)
{ memset(flow,0,sizeof flow);
int total_flow=0; for (;;)
{
dinic_bfs(s);
if (lv[t]<0) return total_flow;
memcpy(iter,fir,sizeof iter);
int _f; while ((_f=dinic_dfs(s,t,INF))>0)
total_flow+=_f;
} return total_flow;
} int that_edge[maxn]; int main()
{
#ifndef ONLINE_JUDGE
freopen("/home/fcbruce/文档/code/t","r",stdin);
#endif // ONLINE_JUDGE int n,_u,_v,_w,s,t; scanf("%d%d%d",&n,&_u,&_v);
s=_u+n;t=_v;
e_max=0;
memset(fir,-1,sizeof fir); for (int i=1;i<=n;i++)
{
for (int j=1;j<=n;j++)
{
scanf("%d",&_w);
if (!_w) continue;
if (i==_u && j==_v || i==_v && j==_u)
{
printf("NO ANSWER!\n");
return 0;
}
add_edge(i+n,j,INF);
}
} for (int i=1;i<=n;i++)
{
that_edge[i]=e_max;
add_edge(i,i+n,1);
} int temp=max_flow(s,t);
bool first=false;
printf("%d\n",temp); for (int i=1;i<=n && temp;i++)
{
if (i==s-n || i==t) continue;
if (!flow[that_edge[i]]) continue;//最小割边一定满流,考虑逆否命题。不满流的边一定不是最小割边
cap[that_edge[i]]=0; int k=max_flow(s,t);
if (k<temp)
{
if (first) putchar(' ');
first=true;
printf("%d",i);
}
else
cap[that_edge[i]]=1;
temp=k;
} putchar('\n'); return 0;
}
POJ 1815 Friendship(最小割)的更多相关文章
- poj 1815 Friendship (最小割+拆点+枚举)
题意: 就在一个给定的无向图中至少应该去掉几个顶点才干使得s和t不联通. 算法: 假设s和t直接相连输出no answer. 把每一个点拆成两个点v和v'',这两个点之间连一条权值为1的边(残余容量) ...
- poj 1815(最小割、割集)
题目链接:http://poj.org/problem?id=1815 思路:题目要求是剔除多少个点,可以将其转化为剔除多少条边,因此需要拆点,将点i拆成i,i+n,便容量为1,表示每个人起的传递作用 ...
- POJ - 1815 Friendship (最小点割集)
(点击此处查看原题) 题目分析 题意:有n个人,编号记为1~n,n个人之间可能有人可以互相联系,如果A能和B联系,那么至少满足这两种情况之一:(1)A知道B的电话(2)A可以和C联系,并且C可以和B联 ...
- POJ 1815 Friendship(字典序最小的最小割)
Friendship Time Limit: 2000MS Memory Limit: 20000K Total Submissions: 10744 Accepted: 2984 Descr ...
- poj 1815 Friendship 字典序最小+最小割
题目链接:http://poj.org/problem?id=1815 In modern society, each person has his own friends. Since all th ...
- POJ 1815 Friendship (Dinic 最小割)
Friendship Time Limit: 2000MS Memory Limit: 20000K Total Submissions: 8025 Accepted: 2224 Descri ...
- POJ 1815 Friendship(最小割+字典序输出割点)
http://poj.org/problem?id=1815 题意: 在现代社会,每个人都有自己的朋友.由于每个人都很忙,他们只通过电话联系.你可以假定A可以和B保持联系,当且仅当:①A知道B的电话号 ...
- poj 1815 Friendship【最小割】
网络流的题总是出各种奇怪的错啊--没写过邻接表版的dinic,然后bfs扫到t点不直接return 1就会TTTTTLE-- 题目中的操作是"去掉人",很容易想到拆点,套路一般是( ...
- POJ 1815 Friendship ★(字典序最小点割集)
[题意]给出一个无向图,和图中的两个点s,t.求至少去掉几个点后才能使得s和t不连通,输出这样的点集并使其字典序最大. 不错的题,有助于更好的理解最小割和求解最小割的方法~ [思路] 问题模型很简单, ...
随机推荐
- linux下获取占用CPU资源最多的10个进程
linux下获取占用CPU资源最多的10个进程,可以使用如下命令组合: ps aux|head -1;ps aux|grep -v PID|sort -rn -k +3|head linux下获取占用 ...
- shell--管道命令(pipe)
管道命令使用的是“|”这个界定符号 管道命令“|”仅能处理经由前面一个命令传来的正确信息,也就是standard output的信息,对于standard error并没有直接处理的能力 每个管道后面 ...
- kubelet分析
kubelet是k8s中节点上运行的管理工具,它负责接受api-server发送的调度请求,在Node上创建管理pod,并且向api-server同步节点的状态.这篇文章主要讲讲kubelet组件如何 ...
- 【Linux】pv vg lv, 加盘,扩容磁盘
PV VG LV关系:一个物理盘(或一个lun)就是一个pv,有几个物理盘就有几个pv.一个或者几个硬盘可以组成一个vg,一个系统可以包括好几个vg,比如rootvg ,datavg等 PV组成VG, ...
- Implementing DDD Reading - Strategic Design
1. 概念篇 1.1 领域 广义上讲,领域即是一个组织所做的事情以及其中所包含的一切,也是组织的业务范围以及在其中所进行的活动.软件所讨论的领域即是这个组织的领域,应该是清晰明确的.不同的层面或粒度, ...
- Netty 中文教程 (二) Hello World !详解
1.HelloServer 详解 HelloServer首先定义了一个静态终态的变量---服务端绑定端口7878.至于为什么是这个7878端口,纯粹是笔者个人喜好.大家可以按照自己的习惯选择端口.当然 ...
- 微信团队分享:iOS版微信的高性能通用key-value组件技术实践
本文来自微信开发团队guoling的技术分享. 1.前言 本文要分享的是iOS版微信内部正在推广和使用的一个高性能通用key-value 组件的技术实践过程,该组件在微信内部被命名为MMKV(以下简称 ...
- antd-design LocaleProvider国际化
1.LocaleProvider 使用 React 的 context 特性,只需在应用外围包裹一次即可全局生效. import { LocaleProvider } from 'antd'; imp ...
- openerp config file
[options] addons_path = /bin/openerp/addonsadmin_passwd = admincsv_internal_sep = , db_host = False ...
- Cookie小案例-----记住浏览过的商品记录
Cookie小案例------记住浏览过的商品记录 我们知道,这个功能在电商项目中非经常见.这里处理请求和页面显示都是由servlet实现,主要是为了体现cookie的作用, 实现功能例如以下: 1, ...