Lecture3   Linear Algebra Review 线性代数回顾

3.1 矩阵和向量
3.2 加法和标量乘法
3.3 矩阵向量乘法
3.4 矩阵乘法
3.5 矩阵乘法的性质
3.6 逆、转置

3.1 矩阵和向量  

  参考视频: 3 - 1 - Matrices and Vectors (9 min).mkv

3.2 加法和标量乘法

  参考视频: 3 - 2 - Addition and Scalar Multiplication (7 min).mkv

3.3 矩阵向量乘法

  参考视频: 3 - 3 - Matrix Vector Multiplication (14 min).mkv

3.4 矩阵乘法

  参考视频: 3 - 4 - Matrix Matrix Multiplication (11 min).mkv

3.5 矩阵乘法的性质

  参考视频: 3 - 5 - Matrix Multiplication Properties (9 min).mkv

  矩阵的乘法有以下规律:

1、不符合交换律 commutative A × B ≠ B× A  【但是对于单位矩阵,有AI = IA = A】

   2、符合组合律 associative    A ×(B× C) =(A × B)× C

3.6 逆、转置

3.6.1 矩阵的逆 Inverse Matrix

  矩阵的逆 A-1  Inverse Matrix。如矩阵 A 是一个 m× m 矩阵(方阵), 如果有逆矩阵A-1 ,则:

  I 称为 单位矩阵 Identity Matrix

  没有逆矩阵的矩阵称为 奇异矩阵singular matrix 或者 退化矩阵 degenerate matrix。

  规则:

  1、只有方阵有逆矩阵。

  2、零矩阵没有逆矩阵 (还有其他一些矩阵没有逆矩阵,可以想成是一些特别接近零矩阵的矩阵)

3.6.2 使用 Octave 计算矩阵的逆

计算矩阵的逆通常使用MATLAB 或者 Octave,打开Octave的bash界面。

  

  以下是在Octave里计算逆矩阵的过程:

 Please contribute if you find this software useful.
For more information, visit https://www.octave.org/get-involved.html Read https://www.octave.org/bugs.html to learn how to submit bug reports.
For information about changes from previous versions, type 'news'. octave:> A = [ ; ]          //
输入一个矩阵 A
A = octave:> pinv(A)               //
计算其逆矩阵 InverseOfA
ans = 0.400000 -0.100000
-0.050000 0.075000 octave:> inverseOfA = pinv(A)
inverseOfA = 0.400000 -0.100000
-0.050000 0.075000 octave:> A * pinv(A)          
ans = 1.0000e+00 5.5511e-17         //
由于计算精度的问题, 四舍五入导致次对角线元素不是0,而是10的-17方、10的-16方,可以近似于0
-2.2204e-16 1.0000e+00 octave:> A * inverseOfA          //
计算 A * InverseOfA
ans = 1.0000e+00 5.5511e-17
-2.2204e-16 1.0000e+00 octave:> inverseOfA * A          
// 计算 InverseOfA * A
ans = 1.00000 -0.00000
0.00000 1.00000 octave:>

3.6.3 矩阵的转置

  矩阵转置 Transpose Matrix ,符号为AT

  定义:设 A 为 m× n 阶矩阵(即 m 行 n 列),第 i 行 j 列的元素是 a(i,j),即:A = a(i,j)。定义 A 的转置为这样一个 n× m 阶矩阵 B,满足 B=a(j,i),即 b (i,j)=a (j,i)(B 的第 i 行第 j 列元素是 A 的第 j 行第 i 列元素),记 AT=B。 (有些书记为 A'=B)
直观来看,将 A 的所有元素绕着一条从第 1 行第 1 列元素出发的右下方 45 度的射线作镜面反转,即得到 A 的转置。

矩阵的转置基本性质:

(A ± B) T = AT ± BT
(A × B) T= BT × AT
(AT) T = A
(KA) T = KAT

  MATLAB 和 Octave 中矩阵转置:直接打一撇, B = A'。

 octave:> B = A'
B =

术语

up to the numerical precision 由于计算精度的问题

essentially 根本上

ten to the minus seventeen  10的-17次方

round off 四舍五入

optimal matrices 最优矩阵

【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 3_Linear Algebra Review的更多相关文章

  1. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 15—Anomaly Detection异常检测

    Lecture 15 Anomaly Detection 异常检测 15.1 异常检测问题的动机 Problem Motivation 异常检测(Anomaly detection)问题是机器学习算法 ...

  2. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 16—Recommender Systems 推荐系统

    Lecture 16 Recommender Systems 推荐系统 16.1 问题形式化 Problem Formulation 在机器学习领域,对于一些问题存在一些算法, 能试图自动地替你学习到 ...

  3. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 14—Dimensionality Reduction 降维

    Lecture 14 Dimensionality Reduction 降维 14.1 降维的动机一:数据压缩 Data Compression 现在讨论第二种无监督学习问题:降维. 降维的一个作用是 ...

  4. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 13—Clustering 聚类

    Lecture 13 聚类 Clustering 13.1 无监督学习简介  Unsupervised Learning Introduction 现在开始学习第一个无监督学习算法:聚类.我们的数据没 ...

  5. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 12—Support Vector Machines 支持向量机

    Lecture 12 支持向量机 Support Vector Machines 12.1 优化目标 Optimization Objective 支持向量机(Support Vector Machi ...

  6. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 11—Machine Learning System Design 机器学习系统设计

    Lecture 11—Machine Learning System Design 11.1 垃圾邮件分类 本章中用一个实际例子: 垃圾邮件Spam的分类 来描述机器学习系统设计方法.首先来看两封邮件 ...

  7. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 10—Advice for applying machine learning 机器学习应用建议

    Lecture 10—Advice for applying machine learning 10.1 如何调试一个机器学习算法? 有多种方案: 1.获得更多训练数据:2.尝试更少特征:3.尝试更多 ...

  8. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 1_Introduction and Basic Concepts 介绍和基本概念

    目录 1.1 欢迎1.2 机器学习是什么 1.2.1 机器学习定义 1.2.2 机器学习算法 - Supervised learning 监督学习 - Unsupervised learning  无 ...

  9. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 18—Photo OCR 应用实例:图片文字识别

    Lecture 18—Photo OCR 应用实例:图片文字识别 18.1 问题描述和流程图 Problem Description and Pipeline 图像文字识别需要如下步骤: 1.文字侦测 ...

随机推荐

  1. Git的origin和master分析

    首先要明确一点,对git的操作是围绕3个大的步骤来展开的(其实几乎所有的SCM都是这样) 1. 从git取数据(git clone) 2. 改动代码 3. 将改动传回git(git push) 这3个 ...

  2. android Handler的使用(二)

     Handler的使用(二) 一. Handler与线程的关系 Handler在默认情况下,实际上它和调用它的Activity是处于同一个线程的. 例如在Handler的使用(一)的示例1中,虽然 ...

  3. 旧书重温:0day2【8】狙击windows的异常处理实验

    现在进入0day2的第六章内容 其中第六章的书本内容我都拍成了图片格式放在了QQ空间中(博客园一张一传,太慢了)http://user.qzone.qq.com/252738331/photo/V10 ...

  4. 你必须知道的495个C语言问题,学习体会四

    本文,我们来学习下指针,这是个梦魇啊.无数次折磨着C语言学习者,无数次的内存泄露,无数次的访问失败,无数次的越界溢出, 这些错误造就的仅仅是一个 跟随者,真正的优秀者必须要正视语言的局限,同时在最大限 ...

  5. 行为驱动开发BDD概要

    BDD脱胎于TDD 行为驱动开发(Behavior-Driven Development,简称BDD),是在测试驱动开发(Test-Driven Development,TDD)基础上发展而来的一种软 ...

  6. 剑指offer-第四章解决面试题的思路(包含min函数的栈)

    题目:定义栈的数据结构,请在该类型中实现一个能够得到栈的最小元素的min函数,在该栈中,调用min,push及pop的时间复杂度都是O(1) 思路:定义两个栈分别为dataStack和minStack ...

  7. webpack新版本4.12应用九(配置文件之多种配置类型)

    除了导出单个配置对象,还有一些方式满足其他需求. 导出为一个函数 最终,你会发现需要在开发和生产构建之间,消除 webpack.config.js 的差异.(至少)有两种选项: 作为导出一个配置对象的 ...

  8. vue router 传参 获取不到query,params

    千万要注意,获取query/params 是this.$route.query 不是this.$router.query!!!

  9. [翻译]Web开发牛人访谈:你们都在用什么?

    小肥鱼译注:早上看到这篇文章,觉得内容甚是有趣.作者跟web开发方面的诸多大牛进行了交流,了解到他们的研究动向,从访谈中可以看到各种风格的开发者,有浏览器控,有设备控.我想,知道行业里的优秀成员在做些 ...

  10. 上一步是硬件描述语言,下一步是FPGA

    上一步是硬件描述语言,下一步是FPGA. 学习了硬件描述语言(Verilog或者VHDL)之后,FPGA该如何继续. 世上没有捷径,每一步都得踏踏实实的走.学习FPGA也是这样,在有了硬件描述语言的基 ...