这是一道数据范围和评测时间水的可怕的题,只是思路有点难想,BUT假如你的思路清晰,完全了解怎么该做,那就算你写一个反LLL和反SLE都能A,如此水的一道题,你不心动吗?

  下面贴出题目

Description

  物流公司要把一批货物从码头A运到码头B。由于货物量比较大,需要n天才能运完。货物运输过程中一般要转
停好几个码头。物流公司通常会设计一条固定的运输路线,以便对整个运输过程实施严格的管理和跟踪。由于各种
因素的存在,有的时候某个码头会无法装卸货物。这时候就必须修改运输路线,让货物能够按时到达目的地。但是
修改路线是一件十分麻烦的事情,会带来额外的成本。因此物流公司希望能够订一个n天的运输计划,使得总成本
尽可能地小。

Input

  第一行是四个整数n(1<=n<=100)、m(1<=m<=20)、K和e。n表示货物运输所需天数,m表示码头总数,K表示
每次修改运输路线所需成本。接下来e行每行是一条航线描述,包括了三个整数,依次表示航线连接的两个码头编
号以及航线长度(>0)。其中码头A编号为1,码头B编号为m。单位长度的运输费用为1。航线是双向的。再接下来
一行是一个整数d,后面的d行每行是三个整数P( 1 < P < m)、a、b(1< = a < = b < = n)。表示编号为P的码
头从第a天到第b天无法装卸货物(含头尾)。同一个码头有可能在多个时间段内不可用。但任何时间都存在至少一
条从码头A到码头B的运输路线。

Output

  包括了一个整数表示最小的总成本。总成本=n天运输路线长度之和+K*改变运输路线的次数。

Sample Input

5 5 10 8
1 2 1
1 3 3
1 4 2
2 3 2
2 4 4
3 4 1
3 5 2
4 5 2
4
2 2 3
3 1 1
3 3 3
4 4 5

Sample Output

32
//前三天走1-4-5,后两天走1-3-5,这样总成本为(2+2)*3+(3+2)*2+10=32
 
这道题的思路有些难想,核心思想是DP+SPFA
那么如何处理SPFA+DP捏
首先,我们要做一个大暴力,那就是枚举算cost[i][j],表示第i天到第j天走同一路径的解,注意这个解在算出路径长度之后要乘以天数。
这不会超时吗?????
鉴于这道题极其水的数据范围和数据,回答是:不会
那么接下来,我们把i从1枚举到n,i表示天数递增,求f[i],同时枚举断点j,转移方程为f[i]=min(f[i],f[j]+cost[j+1][i]+k),(k为改变路径所需代价,注意,这里的i和j是表示天数改变,不是路径,所以不会和SPFA冲突,直接使用算出来的解就好),然后我们就会机智的发现每次改变路线一定会花费k作为代价,但即使不更改只是新建路径也会有k为代价,所以最后答案要减去  把某路径作为初始路径时加上的k,然后就讲完辣
(表示还是我第一次刷DP+图论的如此结合。。。)
下面给出没有优化的代码
 #include<stdio.h>
#include<string.h>
int min(int x,int y){return x>y?y:x;}
struct shit{
int aim;
int lon;
int next;
}e[];
int n,m,K,E,F[],quq[],d[],star,ass,point,head[],a,b,c,cost[][];
bool f[],s[],mp[][];
void fuck(int x,int y,int z)
{
e[++point].aim=y;
e[point].lon=z;
e[point].next=head[x];
head[x]=point;
e[++point].aim=x;
e[point].lon=z;
e[point].next=head[y];
head[y]=point;
}
void SPFA()
{
memset(f,false,sizeof(f));
memset(d,0x3f3f3f3f,sizeof(d));
star=;
ass=;
quq[star]=;
f[]=true;
d[]=;
while(star<=ass)
{
int u=quq[star++];
for(int k=head[u];k;k=e[k].next)
{
int v=e[k].aim;
if(s[v])continue;
if(d[v]>d[u]+e[k].lon)
{
d[v]=d[u]+e[k].lon;
if(f[v])continue;
f[v]=true;
quq[++ass]=v;
}
}
f[u]=false;
}
}
int main()
{
scanf("%d%d%d%d",&n,&m,&K,&E);
for(int i=;i<=E;i++)
{
scanf("%d%d%d",&a,&b,&c);
fuck(a,b,c);
}
int D;
scanf("%d",&D);
for(int i=;i<=D;i++)
{
scanf("%d%d%d",&a,&b,&c);
for(int j=b;j<=c;j++)
mp[a][j]=true;
}
for(int i=;i<=n;i++)
{
for(int j=i;j<=n;j++)
{
memset(s,false,sizeof(s));
for(int k=;k<m;k++)for(int q=i;q<=j;q++)if(mp[k][q]){s[k]=true;break;}//这里是因为算的是在i到j天走同一路径所用的时间,所以直接对不可操作路径堵死就好
SPFA();
cost[i][j]=d[m]*(d[m]>=0x3f3f3f3f?:j-i+);//这里如果你对于不可达的也直接乘了天数就会爆int
}
}
memset(F,0x3f3f3f3f,sizeof(F));
F[]=;
for(int i=;i<=n;i++)
{
for(int j=;j<i;j++)
F[i]=min(F[i],F[j]+cost[j+][i]+K);
}
printf("%d",F[n]-K);
return ;
} 没有优化orz

然而优化过的代码我还没有写,,,

 

值得一做》关于一道DP+SPFA的题 BZOJ1003 (BZOJ第一页计划) (normal-)的更多相关文章

  1. 值得一做》关于并查集的进化题目 BZOJ1015(BZOJ第一页计划)(normal-)

    这道题和以前做过的一道经典的洪水冲桥问题很像,主要做法是逆向思维.(BZOJ第10道非SB题纪念) 先给出题目 Description 很久以前,在一个遥远的星系,一个黑暗的帝国靠着它的超级武器统治者 ...

  2. 值得一做》关于数学与递推 BZOJ1002 (BZOJ第一页计划)(normal+)

    什么都不说先甩题目 Description 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子和圆心处一个核原子构成的,2个原子之间的边表示这2个原子之 ...

  3. 值得一做》一道类似于货车运输的题目(BZOJ3732)(easy+)

    这是一道模板套模板的题目,只要会LCA和最小生成树就可以做,水题 直接先甩题目 Description 给你N个点的无向图 (1 <= N <= 15,000),记为:1…N. 图中有M条 ...

  4. 刷题向》DP》值得一做》关于对DP问题的充分考虑(normal)

    在你辛苦调试一道DP题,遇到瓶颈的时候,你是否感到一股洪荒之力遏制住你的思想,使你给题库贡献了一倍的WA.RE.TLE量,却没有AC过一次? 在这时,你应该考虑的是砸电脑再次重新考虑整个题目,再应对自 ...

  5. POJ 3182 The Grove [DP(spfa) 射线法]

    题意: 给一个地图,给定起点和一块连续图形,走一圈围住这个图形求最小步数 本来是要做课件上一道$CF$题,先做一个简化版 只要保证图形有一个点在走出的多边形内就可以了 $hzc:$动态化静态的思想,假 ...

  6. 值得一做》关于双标记线段树两三事BZOJ 1798 (NORMAL-)

    这是一道双标记线段树的题,很让人很好的预习/学习/复习线段树,我不知道它能让别人学习什么,反正让我对线段树的了解更加深刻. 题目没什么好讲的,程序也没什么好讲的,所以也没有什么题解,但是值得一做 给出 ...

  7. 63. Unique Paths II(中等, 能独立做出来的DP类第二个题^^)

    Follow up for "Unique Paths": Now consider if some obstacles are added to the grids. How m ...

  8. BZOJ1003物流運輸 DP + SPFA

    @[DP, SPFA] Description 物流公司要把一批货物从码头A运到码头B.由于货物量比较大,需要\(n\)天才能运完.货物运输过程中一般要转 停好几个码头.物流公司通常会设计一条固定的运 ...

  9. HDU 4085 Peach Blossom Spring 斯坦纳树 状态压缩DP+SPFA

    状态压缩dp+spfa解斯坦纳树 枚举子树的形态 dp[i][j] = min(dp[i][j], dp[i][k]+dp[i][l]) 当中k和l是对j的一个划分 依照边进行松弛 dp[i][j]  ...

随机推荐

  1. Android 进阶12:进程通信之 Socket (顺便回顾 TCP UDP)

    不要害怕困难,这是你进步的机会! 读完本文你将了解: OSI 七层网络模型 TCPIP 四层模型 TCP 协议 TCP 的三次握手 TCP 的四次挥手 UDP 协议 Socket 简介 Socket ...

  2. Java8新特性Optional、接口中的默认方法与静态方法

    Optional Optional 类(java.util.Optional) 是一个容器类,代表一个值存在或不存在,原来用 null 表示一个值不存在,现在 Optional 可以更好的表达这个概念 ...

  3. Raspberry Pi 配置

    资料 教程 <树莓派使用指南> 系统盘制作 插上电源,连上HDML线,计科

  4. ESLint在vue中的使用

    ESLint的用途 1.审查代码是否符合编码规范和统一的代码风格: 2.审查代码是否存在语法错误:  中文网地址 http://eslint.cn/ 使用VSCode编译器在Vue项目中的使用 在初始 ...

  5. 【个人吐槽】C、Delphi、C#、java 摘抄

    作为个人的一个感受就是,在win平台上开发软件,别再他妈的用MFC了,不适合新手,上手太难.你妹,实现一个半透明的功能,一堆代码,而C#就他妈的几行话.靠. 似乎很多人都觉得Delphi已经没落了.过 ...

  6. 【MFC】vs2013_MFC使用文件之15.mfc 按钮CBitmapButton的使用

    本文是基于对话框的 博文基于 无幻 的博文为基础写的 http://blog.csdn.net/akof1314/article/details/4951836 笔者使用mfc撑死2个星期,不过这是有 ...

  7. HTML里 iframe跳转后关闭iframe

    if(window != top){      top.location.href = location.href;    }

  8. Scrapy库安装和项目创建

    Scrapy是一个流行的网络爬虫框架,从现在起将陆续记录Python3.6下Scrapy整个学习过程,方便后续补充和学习.本文主要介绍scrapy安装.项目创建和测试基本命令操作 scrapy库安装 ...

  9. wlan接收器如何共享网络

    无线局域网络(Wireless Local Area Networks: WLAN)是相当便利的数据传输系统,它利用射频(Radio Frequency: RF)的技术,取代旧式碍手碍脚的双绞铜线(C ...

  10. 什么是 DDoS 攻击?

    欢迎访问网易云社区,了解更多网易技术产品运营经验. 全称Distributed Denial of Service,中文意思为“分布式拒绝服务”,就是利用大量合法的分布式服务器对目标发送请求,从而导致 ...