poj2778(AC 自动机)
poj2778
题意
构造只包含 \(A, T, C, G\) 的字符串,且满足不出现指定的一些字符串,问长度为 \(n\) 的字符串有多少种 ?
分析
AC 自动机 + 矩阵快速幂的神题 ,知识点很多。。。
AC 自动机为了给不同的状态之间建边,矩阵快速幂是为了加速状态转移。
比如说一共有 \(5\) 个状态,我要从 状态 \(0\) 转移到 状态 \(4\) ,从 \(0\) 出发,可以先转移到 \(0\) 再转移到 \(4\) ,也可以先转移到 \(1\) 再转移到 \(4\) ,后面类似。
建一个邻接矩阵,\(mat[i][j]\) 表示 \(i\) 转移到 \(j\) 的方案数,想象一下矩阵相乘的情况,\(mat[0][4]\) 的计算过程,神奇。。。
code
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<queue>
using namespace std;
typedef long long ll;
const int MAXN = 105;
const int MOD = 1e5;
int n, m;
struct Matrix {
ll mat[MAXN][MAXN];
void init() {
memset(mat, 0, sizeof mat);
}
};
Matrix operator*(Matrix A, Matrix B) {
Matrix C;
C.init();
for(int i = 0; i < n; i++) {
for(int j = 0; j < n; j++) {
for(int k = 0; k < n; k++) {
C.mat[i][j] = (C.mat[i][j] + A.mat[i][k] * B.mat[k][j]) % MOD;
}
}
}
return C;
}
Matrix operator^(Matrix A, int x) {
Matrix B;
B.init();
for(int i = 0; i < n; i++) B.mat[i][i] = 1;
while(x) {
if(x & 1) B = B * A;
A = A * A;
x >>= 1;
}
return B;
}
struct Trie {
int id[100];
int root, L, nxt[MAXN][4], val[MAXN], fail[MAXN];
int newnode() {
for(int i = 0; i < 4; i++) {
nxt[L][i] = -1;
}
return L++;
}
void init() {
id['A'] = 0; id['T'] = 1; id['C'] = 2; id['G'] = 3;
L = 0;
root = newnode();
memset(val, 0, sizeof val);
}
void insert(char s[15]) {
int len = strlen(s);
int now = root;
for(int i = 0; i < len; i++) {
int d = id[s[i]];
if(nxt[now][d] == -1) nxt[now][d] = newnode();
now = nxt[now][d];
}
val[now] = 1;
}
void build() {
queue<int> Q;
for(int i = 0; i < 4; i++) {
if(nxt[root][i] == -1) nxt[root][i] = root;
else {
fail[nxt[root][i]] = root;
Q.push(nxt[root][i]);
}
}
while(!Q.empty()) {
int now = Q.front(); Q.pop();
if(val[fail[now]]) val[now] = 1;
for(int i = 0; i < 4; i++) {
if(nxt[now][i] == -1) nxt[now][i] = nxt[fail[now]][i];
else {
fail[nxt[now][i]] = nxt[fail[now]][i];
Q.push(nxt[now][i]);
}
}
}
}
Matrix buildMatrix() {
Matrix A; A.init();
for(int i = 0; i < L; i++) {
for(int j = 0; j < 4; j++) {
if(!val[i] && !val[nxt[i][j]]) {
A.mat[i][nxt[i][j]]++;
}
}
}
return A;
}
}trie;
int main() {
trie.init();
int k;
scanf("%d%d", &m, &k);
for(int i = 0; i < m; i++) {
char s[15];
scanf("%s", s);
trie.insert(s);
}
trie.build();
Matrix A = trie.buildMatrix();
n = trie.L;
A = A ^ k;
int ans = 0;
for(int i = 0; i < n; i++) {
ans = (ans + A.mat[0][i]) % MOD;
}
printf("%d\n", ans);
return 0;
}
poj2778(AC 自动机)的更多相关文章
- poj2778 ac自动机+矩阵快速幂
给m个子串,求长度为n的不包含子串的母串数,最直接的应该是暴搜,肯定tle,考虑用ac自动机 将子串建成字典树,通过next表来构造矩阵,然后用矩阵快速幂求长度为n的数量 邻接矩阵https://we ...
- poj2778 AC自动机
以下内容均为转载,,只有代码是自己写的=-= http://blog.csdn.net/morgan_xww/article/details/7834801 转载地址 博主写的很好 ------- ...
- 【POJ2778】DNA Sequence(AC自动机,DP)
题意: 生物课上我们学到,DNA序列中只有A, C, T和G四种片段. 经科学发现,DNA序列中,包含某些片段会产生不好的基因,如片段"ATC"是不好片段,则"AGATC ...
- 【POJ2778】AC自动机+矩阵乘法
DNA Sequence Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 14758 Accepted: 5716 Descrip ...
- POJ2778 DNA Sequence(AC自动机 矩阵)
先使用AC自动机求得状态转移关系,再建立矩阵,mat[i][j]表示一步可从i到j且i,j节点均非终止字符的方案数,则此矩阵的n次方表示n步从i,到j的方法数. #include<cstdio& ...
- POJ2778 DNA Sequence(AC自动机+矩阵快速幂)
题目给m个病毒串,问不包含病毒串的长度n的DNA片段有几个. 感觉这题好神,看了好久的题解. 所有病毒串构造一个AC自动机,这个AC自动机可以看作一张有向图,图上的每个顶点就是Trie树上的结点,每个 ...
- poj2778(AC自动机+矩阵快速幂)
题意:给你n个字符串,问你长度为m的字符串且字符串中不含有那n个子串的字符串的数量 解题思路:这道题一开始就不太懂,还以为是组合数学的题目,后面看了别人的博客,才知道这是属于AC自动机的另一种用法,是 ...
- 【POJ2778】DNA Sequence 【AC自动机,dp,矩阵快速幂】
题意 题目给出m(m<=10)个仅仅由A,T,C,G组成的单词(单词长度不超过10),然后给出一个整数n(n<=2000000000),问你用这四个字母组成一个长度为n的长文本,有多少种组 ...
- poj2778 DNA Sequence【AC自动机】【矩阵快速幂】
DNA Sequence Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 19991 Accepted: 7603 Des ...
随机推荐
- MySQL in查询优化
https://blog.csdn.net/gua___gua/article/details/47401621 MySQL in查询优化<一> 原创 2015年08月10日 17:57: ...
- clientWidth、clientHeight、offsetWidth、offsetHeight以及scrollWidth、scrollHeight
clientWidth.clientHeight.offsetWidth.offsetHeight以及scrollWidth.scrollHeight是几个困惑了好久的元素属性,趁着有时间整理一下 1 ...
- 【BZOJ 3165】 [Heoi2013]Segment 李超线段树
所谓李超线段树就是解决此题一类的问题(线段覆盖查询点最大(小)),把原本计算几何的题目变成了简单的线段树,巧妙地结合了线段树的标记永久化与标记下传,在不考虑精度误差的影响下,打法应该是这样的. #in ...
- taotao前台页面显示登录用户名的处理
思路: 在每个页面上都引入一个 jsp,这个 jsp 可以是页面的头 head 或者脚 footer.jsp 然后在这个 jsp 中引入 一个 js,这个 js 中 有个 随页面加载 而执行的 方法, ...
- MySQL备份之mysqlhotcopy与注意事项
此文章主要向大家介绍的是MySQL备份之mysqlhotcopy与其在实际操作中应注意事项的描述,我们大家都知道实现MySQL数据库备份的常用方法有三个,但是我们今天主要向大家介绍的是其中的一个比较好 ...
- BS架构下使用消息队列的工作流程
异步通信 对于BS(Browser-Server 浏览器)架构,很多情景下server的处理时间较长. 如果浏览器发送请求后,保持跟server的连接,等待server响应,那么一方面会对用户的体验有 ...
- Android百度地图的使用
做关于位置或者定位的app的时候免不了使用地图功能,本人最近由于项目的需求需要使用百度地图的一些功能,所以这几天研究了一下,现写一下blog记录一下,欢迎大家评论指正! 一.申请AK(API Key) ...
- 转:nginx入门指南,快速搭建静态文件服务器和代理服务器
本文介绍 Nginx 入门基础知识,让你迅速搭建 Nginx 服务器.主要内容包括 Nginx 安装和简单使用.Nginx的简单原理.Nginx 配置文件的结构.如何使用 Nginx 来提供静态文件服 ...
- MySQL中大于等于小于等于的写法
由于在mybatis框架的xml中<= , >=解析会出现问题,编译报错,所以需要转译 第一种写法: 原符号 < <= > >= & ' " 替换 ...
- 【BZOJ3700】发展城市 [LCA][RMQ]
发展城市 Time Limit: 20 Sec Memory Limit: 512 MB[Submit][Status][Discuss] Description 众所周知,Hzwer学长是一名高富 ...