A1206. 小Z的袜子
时间限制:1.0s   内存限制:512.0MB  
总提交次数:744   AC次数:210   平均分:44.44
将本题分享到:
      
试题来源
  2010中国国家集训队命题答辩
问题描述
  作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿。终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命……
  具体来说,小Z把这N只袜子从1到N编号,然后从编号L到R(L 尽管小Z并不在意两只袜子是不是完整的一双,甚至不在意两只袜子是否一左一右,他却很在意袜子的颜色,毕竟穿两只不同色的袜子会很尴尬。
  你的任务便是告诉小Z,他有多大的概率抽到两只颜色相同的袜子。当然,小Z希望这个概率尽量高,所以他可能会询问多个(L,R)以方便自己选择。
输入格式
  输入文件第一行包含两个正整数N和M。N为袜子的数量,M为小Z所提的询问的数量。
  接下来一行包含N个正整数Ci,其中Ci表示第i只袜子的颜色,相同的颜色用相同的数字表示。
  再接下来M行,每行两个正整数L,R表示一个询问。
输出格式
  输出文件包含M行,对于每个询问在一行中输出分数A/B表示从该询问的区间[L,R]中随机抽出两只袜子颜色相同的概率。若该概率为0则输出0/1,否则输出的A/B必须为最简分数。(详见样例)
样例输入
6 4
1 2 3 3 3 2
2 6
1 3
3 5
1 6
样例输出
2/5
0/1
1/1
4/15
样例说明
  询问1:共C(5,2)=10种可能,其中抽出两个2有1种可能,抽出两个3有3种可能,概率为(1+3)/10=4/10=2/5。
  询问2:共C(3,2)=3种可能,无法抽到颜色相同的袜子,概率为0/3=0/1。
  询问3:共C(3,2)=3种可能,均为抽出两个3,概率为3/3=1/1。
  注:上述C(a, b)表示组合数,组合数C(a, b)等价于在a个不同的物品中选取b个的选取方案数。
数据规模和约定
  30%的数据中 N,M ≤ 5000;
  60%的数据中 N,M ≤ 25000;
  100%的数据中 N,M ≤ 50000,1 ≤ L < R ≤ N,Ci ≤ N。

题意:

中文题目就不解释了。

思路:

对于L,R的询问。设其中颜色为x,y,z....的袜子的个数为a,b,c。。。

那么答案即为(a*(a-1)/2+b*(b-1)/2+c*(c-1)/2....)/((R-L+1)*(R-L)/2)

化简得:(a^2+b^2+c^2+...x^2-(a+b+c+d+.....))/((R-L+1)*(R-L))

即:(a^2+b^2+c^2+...x^2-(R-L+1))/((R-L+1)*(R-L))

所以这道题目的关键是求一个区间内每种颜色数目的平方和。

但问题时怎么快速求解呢?

对于一般区间维护类问题一般想到用线段树。但是这题完全不知道线段树怎么做,百度了下。知道是莫队算法

于是乎学习了下。写写学习的心得吧。

莫队算法是莫涛发明了。感觉这人蛮牛逼的。但是网上各种百度他的论文却找不到了。只好到别人的博客里学习学习。莫队算法是离线处理一类区间不修改查询类问题的算法。就是如果你知道了[L,R]的答案。你可以在O(1)的时间下得到[L,R-1]和[L,R+1]和[L-1,R]和[L+1,R]的答案的话。就可以使用莫队算法。

对于莫队算法我感觉就是暴力。只是预先知道了所有的询问。可以合理的组织计算每个询问的顺序以此来降低复杂度。要知道我们算完[L,R]的答案后现在要算[L',R']的答案。由于可以在O(1)的时间下得到[L,R-1]和[L,R+1]和[L-1,R]和[L+1,R]的答案.所以计算[L',R']的答案花的时间为|L-L'|+|R-R'|。如果把询问[L,R]看做平面上的点a(L,R).询问[L',R']看做点b(L',R')的话。那么时间开销就为两点的曼哈顿距离。所以对于每个询问看做一个点。我们要按一定顺序计算每个值。那开销就为曼哈顿距离的和。要计算到每个点。那么路径至少是一棵树。所以问题就变成了求二维平面的最小曼哈顿距离生成树。

这样只要顺着树边计算一次就ok了。可以证明时间复杂度为n*sqrt(n)这个我不会证明。

但是这种方法编程复杂度稍微高了一点。所以有一个比较优雅的替代品。那就是先对序列分块。然后对于所有询问按照L所在块的大小排序。如果一样再按照R排序。然后按照排序后的顺序计算。为什么这样计算就可以降低复杂度呢。

一、i与i+1在同一块内,r单调递增,所以r是O(n)的。由于有n^0.5块,所以这一部分时间复杂度是n^1.5。
二、i与i+1跨越一块,r最多变化n,由于有n^0.5块,所以这一部分时间复杂度是n^1.5
三、i与i+1在同一块内时变化不超过n^0.5,跨越一块也不会超过2*n^0.5,不妨看作是n^0.5。由于有n个数,所以时间复杂度是n^1.5
于是就变成了O(n^1.5)了。

解析来自于:http://blog.csdn.net/bossup/article/details/39236275

#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <string>
#include <map>
#include <stack>
#include <queue>
#include <vector>
#define inf 0x3f3f3f3f
#define met(a,b) memset(a,b,sizeof a)
#define pb push_back
typedef long long ll;
using namespace std;
const int N = 5e4+;
const int M = ;
ll num[N],up[N],dw[N],ans,aa,bb,cc;
int col[N],pos[N];
struct qnode {
int l,r,id;
} qu[N];
bool cmp(qnode a,qnode b) {
if(pos[a.l]==pos[b.l])
return a.r<b.r;
return pos[a.l]<pos[b.l];
}
ll gcd(ll x,ll y) {
ll tp;
while(tp=x%y) {
x=y;
y=tp;
}
return y;
}
void update(int x,int d) {
ans-=num[col[x]]*num[col[x]];
num[col[x]]+=d;
ans+=num[col[x]]*num[col[x]];
}
int main() {
int n,m,i,j,bk,pl,pr,id;
while(~scanf("%d%d",&n,&m)) {
memset(num,,sizeof num);
bk=ceil(sqrt(1.0*n));
for(i=; i<=n; i++) {
scanf("%d",&col[i]);
pos[i]=(i-)/bk;
}
for(i=; i<m; i++) {
scanf("%d%d",&qu[i].l,&qu[i].r);
qu[i].id=i;
}
sort(qu,qu+m,cmp);
pl=,pr=;
ans=;
for(i=; i<m; i++) {
id=qu[i].id;
if(qu[i].l==qu[i].r) {
up[id]=,dw[id]=;
continue;
}
if(pr<qu[i].r) {
for(j=pr+; j<=qu[i].r; j++)
update(j,);
} else {
for(j=pr; j>qu[i].r; j--)
update(j,-);
}
pr=qu[i].r;
if(pl<qu[i].l) {
for(j=pl; j<qu[i].l; j++)
update(j,-);
} else {
for(j=pl-; j>=qu[i].l; j--)
update(j,);
}
pl=qu[i].l;
aa=ans-qu[i].r+qu[i].l-;
bb=(ll)(qu[i].r-qu[i].l+)*(qu[i].r-qu[i].l);
cc=gcd(aa,bb);
aa/=cc,bb/=cc;
up[id]=aa,dw[id]=bb;
}
for(i=; i<m; i++)
printf("%lld/%lld\n",up[i],dw[i]);
}
return ;
}

HYSBZ - 2038 小Z的袜子 (莫队算法)的更多相关文章

  1. bzoj 2038 小Z的袜子 莫队算法

    题意 给你一个长度序列,有多组询问,每次询问(l,r)任选两个数相同的概率.n <= 50000,数小于等于n. 莫队算法裸题. 莫队算法:将序列分为根号n段,将询问排序,以L所在的块为第一关键 ...

  2. BZOJ 2038 小z的袜子 & 莫队算法(不就是个暴力么..)

    题意: 给一段序列,询问一个区间,求出区间中.....woc! 贴原题! 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小Z再也无法忍受这恼人的找袜子过 ...

  3. bzoj 2038 小z的袜子 莫队例题

    莫队,利用可以快速地通过一个问题的答案得到另一问题的答案这一特性,合理地组织问题的求解顺序,将已解决的问题帮助解决当前问题,来优化时间复杂度. 典型用法:处理静态(无修改)离线区间查询问题. 线段树也 ...

  4. 【国家集训队2010】小Z的袜子[莫队算法]

    [莫队算法][国家集训队2010]小Z的袜子 Description 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小Z再也无法忍受这恼人的找袜子过程, ...

  5. bzoj 2308 小Z的袜子(莫队算法)

    小Z的袜子 [题目链接]小Z的袜子 [题目类型]莫队算法 &题解: 莫队算法第一题吧,建议先看这个理解算法,之后在参考这个就可以写出简洁的代码 我的比第2个少了一次sort,他的跑了1600m ...

  6. [日常摸鱼]bzoj2038[2009国家集训队]小Z的袜子-莫队算法

    今天来学了下莫队-这题应该就是这个算法的出处了 一篇别人的blog:https://www.cnblogs.com/Paul-Guderian/p/6933799.html 题意:一个序列,$m$次询 ...

  7. bzoj 2038 小z的袜子 莫队

    莫队大法好,入坑保平安 只要能O(1)或O(log)转移,离线莫队貌似真的无敌. #include<cstdio> #include<iostream> #include< ...

  8. Luogu 1494 - 小Z的袜子 - [莫队算法模板题][分块]

    题目链接:https://www.luogu.org/problemnew/show/P1494 题目描述 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天 ...

  9. 小Z的袜子 & 莫队

    莫队学习 & 小Z的袜子 引入 莫队 由莫涛巨佬提出,是一种离线算法 运用广泛 可以解决广大的离线区间询问题 莫队的历史 早在mt巨佬提出莫队之前 类似莫队的算法和莫队的思想已在Codefor ...

随机推荐

  1. IPVS和Nginx两种WRR负载均衡算法详解

    动机 五一临近,四月也接近尾声,五一节乃小长假的最后一天.今天是最后一天工作日,竟然感冒了,半夜里翻来覆去无法安睡,加上窗外大飞机屋里小飞机(也就是蚊子)的骚扰,实在是必须起来做点有意义的事了!    ...

  2. [Leetcode] Best time to buy and sell stock iii 买卖股票的最佳时机

    Say you have an array for which the i th element is the price of a given stock on day i. Design an a ...

  3. BZOJ1009: [HNOI2008]GT考试 矩阵快速幂+kmp+dp

    这个题你发现打暴力的话可以记忆化搜素加剪枝,那么意味着可以递推,我们搜的话就是1010^9我们就往下匹配遇到匹配成功就return,那么我们可以想一下什么决定了状态,我们考虑kmp的过程,对于我们目前 ...

  4. jquery学习总计

    1,jquery的基础语法 $(selector).action(); 选择器(selector)查询和查找html元素,action()执行对函数的操作. 2.选择器 id,类,类型,属性,属性值等 ...

  5. L2-002. 链表去重---模拟

    https://www.patest.cn/contests/gplt/L2-002 L2-002. 链表去重 时间限制 300 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 ...

  6. 汕头市队赛 C SRM 05 - YYL 杯 R1 T3!

    C SRM 05 - YYL 杯 R1 背景 tjmak 描述 给一个大小为n的序列V.序列里的元素有正有负.问至少要删除多少个元素使得序列里不存在区间(要求非空)和 >= S.如果答案大于m, ...

  7. xampp命令

    XAMPP命令安装 XAMPPtar xvfz xampp-linux-1.6.4.tar.gz -C /opt启动 XAMPP/opt/lampp/lampp start停止 XAMPP/opt/l ...

  8. Kali Linux中前十名的Wifi攻击工具

    无 线网络的攻与防一直是比较热门的话题,由于无线信号可以被一定范围内的任何人接收到(包括死黑阔),这样就给WIFI带来了安全隐患:路由器生产厂商和网 络服务供应商(ISPs)的配置大多是默认开启了WP ...

  9. 使用dd命令克隆整个系统

    神奇的ghost的原理是什么呢?不就是数据复制吗?Linux下的dd命令不就是最强大的数据复制工具!          既然如此,我为什么要使用g4l这样复杂的工具呢?一条dd命令不就可以帮我实现任意 ...

  10. Java相关框架

    框架 类型 设计(个人理解) HK2 自动注入框架 Jersey RESTful Jetty HTTP服务 Retrofit HTTP客户端 ActiveMQ 消息组件 主题.队列 Redis K-V ...