algoritm.in / algoritm.out

Even though he isn't a student of computer science, Por Costel the pig has started to study Graph Theory. Today he's learning about Bellman-Ford, an algorithm that calculates the minimum cost path from a source node (for instance, node 1) to all the other nodes in a directed graph with weighted edges. Por Costel, utilizing his scarce programming knowledge has managed to scramble the following code in C++, a variation of the Bellman-Ford algorithm:

You can notice a lot of deficiencies in the above code. In addition to its rudimentary documentation, we can see that Por Costel has stored this graph as an array of edges (the array ). An edge is stored as the triplet  signifying an edge that spans from  to  and has weight . But even worse is the fact that the algorithm is SLOW!

As we want our hooved friend to walk away with a good impression about computer science, we want his code to execute as FAST as possible. In order to do so, we can modify the order of edges in the array  so that the while loop executes a small number of times.

Given a directed graph of  nodes and  edges, you are asked to produce an ordering of the edges such that the Bellman-Ford algorithm written by Por Costel should finish after at most two iterations of the while loop(that is, the program should enter the while loop at most twice).

Input

The first line of the file algoritm.in will contain an integer  , the number of test cases.

Each of the  test cases has the following format: on the first line, there are two numbers  and  (), the number of nodes and the number of edges in the graph respectively.

The next  lines describe the edges, each containing three integers  signifying there is an edge from node  to node  with weight  ()

It is guaranteed that node  has at least one outgoing edge.

The graph may contain self loops and/or multiple edges.

Output

The output file algoritm.out should contain  lines representing the answers to each test case.

For each test case you should output a permutation of numbers from  to , representing the order of the edges you want in Por Costel's array of edges .

The edges are considered indexed by the order in which they are given in the input (the -th edge read is the edge with index ).

If there are multiple solutions, you are allowed to print any of them.

Example

Input
1
4 4
1 2 1
3 4 2
2 3 3
1 3 1
Output
1 4 2 3

题意就是一个傻逼写了个最短路,问你怎么将输入的graph的边排序,使得他的最短路只跑一次。

显然先跑在最短路径树上的边,再跑其他的边,就只需要一次了。

必须用堆dijkstra,好像卡了spfa。

#include<cstdio>
#include<queue>
#include<cstring>
using namespace std;
typedef long long ll;
#define INF 1000000000007ll
#define N 100010
#define M 200010
struct Point{ll d;int u;
Point(const ll &X,const int &Y){d=X;u=Y;}
Point(){}};
int T,n,m;
int cnt;
bool operator < (Point a,Point b){return a.d>b.d;}
priority_queue<Point>q;
int v[M],__next[M],first[N],w[M],e;
int fa[N],fam[N];
ll d[N];
void AddEdge(int U,int V,int W)
{
v[++e]=V;
w[e]=W;
__next[e]=first[U];
first[U]=e;
}
bool vis[N],intree[M];
void dijkstra(int S)
{
for(int i=1;i<=n;++i) d[i]=INF;
d[S]=0; q.push(Point(0,S));
while(!q.empty())
{
Point x=q.top(); q.pop();
if(!vis[x.u])
{
vis[x.u]=1;
for(int i=first[x.u];i;i=__next[i])
if(d[v[i]]>d[x.u]+(ll)w[i])
{
d[v[i]]=d[x.u]+(ll)w[i];
fa[v[i]]=x.u;
intree[fam[v[i]]]=0;
fam[v[i]]=i;
intree[i]=1;
q.push(Point(d[v[i]],v[i]));
}
}
}
}
void dfs(int U)
{
for(int i=first[U];i;i=__next[i])
if(intree[i])
{
++cnt;
printf("%d%c",i,cnt==m ? '\n' : ' ');
dfs(v[i]);
}
}
int main()
{
freopen("algoritm.in","r",stdin);
freopen("algoritm.out","w",stdout);
//freopen("b.in","r",stdin);
int x,y,z;
scanf("%d",&T);
for(;T;--T)
{
cnt=e=0;
memset(v,0,sizeof(v));
memset(w,0,sizeof(w));
memset(__next,0,sizeof(__next));
memset(first,0,sizeof(first));
memset(fa,0,sizeof(fa));
memset(fam,0,sizeof(fam));
memset(d,0,sizeof(d));
memset(vis,0,sizeof(vis));
memset(intree,0,sizeof(intree));
scanf("%d%d",&n,&m);
for(int i=1;i<=m;++i)
{
scanf("%d%d%d",&x,&y,&z);
AddEdge(x,y,z);
}
dijkstra(1);
dfs(1);
for(int i=1;i<=m;++i)
if(!intree[i])
{
++cnt;
printf("%d%c",i,cnt==m ? '\n' : ' ');
}
}
return 0;
}

【Heap-dijkstra】Gym - 100923B - Por Costel and the Algorithm的更多相关文章

  1. 【找规律】Gym - 100923L - Por Costel and the Semipalindromes

    semipal.in / semipal.out Por Costel the pig, our programmer in-training, has recently returned from ...

  2. 【分块打表】Gym - 100923K - Por Costel and the Firecracker

    semipal.in / semipal.out Por Costel the pig, our programmer in-training, has recently returned from ...

  3. 【数形结合】Gym - 100923I - Por Costel and the Pairs

    perechi3.in / perechi3.out We don't know how Por Costel the pig arrived at FMI's dance party. All we ...

  4. 【并查集】Gym - 100923H - Por Costel and the Match

    meciul.in / meciul.out Oberyn Martell and Gregor Clegane are dueling in a trial by combat. The fight ...

  5. 【动态规划】Gym - 100923A - Por Costel and Azerah

    azerah.in / azerah.out Por Costel the Pig has received a royal invitation to the palace of the Egg-E ...

  6. 【带权并查集】Gym - 100923H - Por Costel and the Match

    裸题. 看之前的模版讲解吧,这里不再赘述了. #include<cstdio> #include<cstring> using namespace std; int fa[10 ...

  7. 【NOI导刊200908模拟试题02 题4】【二分+Dijkstra】 收费站

    Description 在某个遥远的国家里,有n个城市.编号外1,2,3,-,n. 这个国家的政府修建了m条双向的通路.每条公路连接着两个城市.沿着某条公路,开车从一个城市到另一个城市,需要花费一定的 ...

  8. 【拓扑排序】【线段树】Gym - 101102K - Topological Sort

    Consider a directed graph G of N nodes and all edges (u→v) such that u < v. It is clear that this ...

  9. 【每日dp】 Gym - 101889E Enigma 数位dp 记忆化搜索

    题意:给你一个长度为1000的串以及一个数n 让你将串中的‘?’填上数字 使得该串是n的倍数而且最小(没有前导零) 题解:dp,令dp[len][mod]为是否出现过 填到第len位,余数为mod 的 ...

随机推荐

  1. HDU 5655 四边形判断

    CA Loves Stick Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others) ...

  2. 复杂的json分析

    在复杂的JSON数据的格式中,往往会对JSON数据进行嵌套,这样取值会比之前的取值稍微复杂一点,但是只要思路清晰,其实取法还是一样的.就跟if else语句一样,如果if中套if,if中再套if,写的 ...

  3. yaml语法

    http://blog.csdn.net/mack415858775/article/details/51015662 name: Tom Smith age: 37 spouse: name: Ja ...

  4. vue-transition-fade

    <!Doctype> <html> <head> <meta charset="utf-8"> <meta name=&quo ...

  5. java生成API文档

    1.选择项目右键-Export\javadoc 2.选择生成工具在jdk安装目录下jdk\bin\javadoc.exe 3.在Eclipse里 export 选 JavaDoc,在向导的最后一页的E ...

  6. 【hdu2825-Wireless Password】AC自动机+DP

    http://acm.hust.edu.cn/vjudge/problem/16883 题意:要构造一个长度为n的字符串,然后有m模板串构成一个集合(m<=10),构造出来的字符串至少含有k种模 ...

  7. bootstrap-datetimepicker年视图中endDate设置之后比正常时间提前两个月

    问题 bootstrap-datetimepicker年视图中endDate设置结束时间为2016-08,(即8月之后的日期不能选)而在日历上显示时为2016-06,相差两个月,即6月之后的日期不能选 ...

  8. Java任务调度框架----kunka

    初衷 工作中用到了很多框架,但是给我印象最深的还是我们PO(Product Owner)在若干年前写的一套任务调度框架,在JDK1.4之前,concurrent包还没有引入, 手写的这套Token调度 ...

  9. CTL_CODE说明

    DeviceIoControl函数的第二个参数IoControlCode就是由CTL_CODE宏定义的,下边我们可以了解一下CTL_CODE的内容. CTL_CODE:用于创建一个唯一的32位系统I/ ...

  10. shell整数加法

    http://blog.csdn.net/ll_0520/article/details/5959577 #plus #!/bin/sh let a=$1+$2 b=$[$1+$2] ((c=$1+$ ...