【Heap-dijkstra】Gym - 100923B - Por Costel and the Algorithm
algoritm.in / algoritm.out
Even though he isn't a student of computer science, Por Costel the pig has started to study Graph Theory. Today he's learning about Bellman-Ford, an algorithm that calculates the minimum cost path from a source node (for instance, node 1) to all the other nodes in a directed graph with weighted edges. Por Costel, utilizing his scarce programming knowledge has managed to scramble the following code in C++, a variation of the Bellman-Ford algorithm:
You can notice a lot of deficiencies in the above code. In addition to its rudimentary documentation, we can see that Por Costel has stored this graph as an array of edges (the array ). An edge is stored as the triplet
signifying an edge that spans from
to
and has weight
. But even worse is the fact that the algorithm is SLOW!
As we want our hooved friend to walk away with a good impression about computer science, we want his code to execute as FAST as possible. In order to do so, we can modify the order of edges in the array so that the while loop executes a small number of times.
Given a directed graph of nodes and
edges, you are asked to produce an ordering of the edges such that the Bellman-Ford algorithm written by Por Costel should finish after at most two iterations of the while loop(that is, the program should enter the while loop at most twice).
Input
The first line of the file algoritm.in will contain an integer
, the number of test cases.
Each of the test cases has the following format: on the first line, there are two numbers
and
(
), the number of nodes and the number of edges in the graph respectively.
The next lines describe the edges, each containing three integers
signifying there is an edge from node
to node
with weight
(
)
It is guaranteed that node has at least one outgoing edge.
The graph may contain self loops and/or multiple edges.
Output
The output file algoritm.out should contain lines representing the answers to each test case.
For each test case you should output a permutation of numbers from to
, representing the order of the edges you want in Por Costel's array of edges
.
The edges are considered indexed by the order in which they are given in the input (the -th edge read is the edge with index
).
If there are multiple solutions, you are allowed to print any of them.
Example
1
4 4
1 2 1
3 4 2
2 3 3
1 3 1
1 4 2 3
题意就是一个傻逼写了个最短路,问你怎么将输入的graph的边排序,使得他的最短路只跑一次。
显然先跑在最短路径树上的边,再跑其他的边,就只需要一次了。
必须用堆dijkstra,好像卡了spfa。
#include<cstdio>
#include<queue>
#include<cstring>
using namespace std;
typedef long long ll;
#define INF 1000000000007ll
#define N 100010
#define M 200010
struct Point{ll d;int u;
Point(const ll &X,const int &Y){d=X;u=Y;}
Point(){}};
int T,n,m;
int cnt;
bool operator < (Point a,Point b){return a.d>b.d;}
priority_queue<Point>q;
int v[M],__next[M],first[N],w[M],e;
int fa[N],fam[N];
ll d[N];
void AddEdge(int U,int V,int W)
{
v[++e]=V;
w[e]=W;
__next[e]=first[U];
first[U]=e;
}
bool vis[N],intree[M];
void dijkstra(int S)
{
for(int i=1;i<=n;++i) d[i]=INF;
d[S]=0; q.push(Point(0,S));
while(!q.empty())
{
Point x=q.top(); q.pop();
if(!vis[x.u])
{
vis[x.u]=1;
for(int i=first[x.u];i;i=__next[i])
if(d[v[i]]>d[x.u]+(ll)w[i])
{
d[v[i]]=d[x.u]+(ll)w[i];
fa[v[i]]=x.u;
intree[fam[v[i]]]=0;
fam[v[i]]=i;
intree[i]=1;
q.push(Point(d[v[i]],v[i]));
}
}
}
}
void dfs(int U)
{
for(int i=first[U];i;i=__next[i])
if(intree[i])
{
++cnt;
printf("%d%c",i,cnt==m ? '\n' : ' ');
dfs(v[i]);
}
}
int main()
{
freopen("algoritm.in","r",stdin);
freopen("algoritm.out","w",stdout);
//freopen("b.in","r",stdin);
int x,y,z;
scanf("%d",&T);
for(;T;--T)
{
cnt=e=0;
memset(v,0,sizeof(v));
memset(w,0,sizeof(w));
memset(__next,0,sizeof(__next));
memset(first,0,sizeof(first));
memset(fa,0,sizeof(fa));
memset(fam,0,sizeof(fam));
memset(d,0,sizeof(d));
memset(vis,0,sizeof(vis));
memset(intree,0,sizeof(intree));
scanf("%d%d",&n,&m);
for(int i=1;i<=m;++i)
{
scanf("%d%d%d",&x,&y,&z);
AddEdge(x,y,z);
}
dijkstra(1);
dfs(1);
for(int i=1;i<=m;++i)
if(!intree[i])
{
++cnt;
printf("%d%c",i,cnt==m ? '\n' : ' ');
}
}
return 0;
}
【Heap-dijkstra】Gym - 100923B - Por Costel and the Algorithm的更多相关文章
- 【找规律】Gym - 100923L - Por Costel and the Semipalindromes
semipal.in / semipal.out Por Costel the pig, our programmer in-training, has recently returned from ...
- 【分块打表】Gym - 100923K - Por Costel and the Firecracker
semipal.in / semipal.out Por Costel the pig, our programmer in-training, has recently returned from ...
- 【数形结合】Gym - 100923I - Por Costel and the Pairs
perechi3.in / perechi3.out We don't know how Por Costel the pig arrived at FMI's dance party. All we ...
- 【并查集】Gym - 100923H - Por Costel and the Match
meciul.in / meciul.out Oberyn Martell and Gregor Clegane are dueling in a trial by combat. The fight ...
- 【动态规划】Gym - 100923A - Por Costel and Azerah
azerah.in / azerah.out Por Costel the Pig has received a royal invitation to the palace of the Egg-E ...
- 【带权并查集】Gym - 100923H - Por Costel and the Match
裸题. 看之前的模版讲解吧,这里不再赘述了. #include<cstdio> #include<cstring> using namespace std; int fa[10 ...
- 【NOI导刊200908模拟试题02 题4】【二分+Dijkstra】 收费站
Description 在某个遥远的国家里,有n个城市.编号外1,2,3,-,n. 这个国家的政府修建了m条双向的通路.每条公路连接着两个城市.沿着某条公路,开车从一个城市到另一个城市,需要花费一定的 ...
- 【拓扑排序】【线段树】Gym - 101102K - Topological Sort
Consider a directed graph G of N nodes and all edges (u→v) such that u < v. It is clear that this ...
- 【每日dp】 Gym - 101889E Enigma 数位dp 记忆化搜索
题意:给你一个长度为1000的串以及一个数n 让你将串中的‘?’填上数字 使得该串是n的倍数而且最小(没有前导零) 题解:dp,令dp[len][mod]为是否出现过 填到第len位,余数为mod 的 ...
随机推荐
- HAOI2006 均分数据 [模拟退火]
题目描述 已知N个正整数:A1.A2.--.An .今要将它们分成M组,使得各组数据的数值和最平均,即各组的均方差最小.均方差公式如下: 输入输出格式 输入格式: 输入文件data.in包括: 第一行 ...
- inflate
LayoutInflater是用 来找res/layout/下的xml布局文件,并且实例化 https://www.cnblogs.com/savagemorgan/p/3865831.html
- C++ 中 string, char*, int 类型的相互转换
一.int 1.int 转换成 string 1) to_string函数 —— c++11标准增加了全局函数std::to_string: string to_string (int val); s ...
- matlab求最大公约数和最小公倍数
最大公约数:(函数) function n = zuidagongyueshu(a,b) if(a>b) tem = a; b = a; a = tmp; end for i=1:a c = r ...
- Nodejs写的搬家工具知识分享
这篇文章 主要学习这两个模块的使用: request-promise-native : https://github.com/request/request-promise-native cheeri ...
- 图论的复习/(ㄒoㄒ)/
图论基本概念 完全图: 每对顶点之间有边并且只有唯一的一条边. 强连通分量:有向图中任意2点都联通的最大子图. 图的储存 邻接矩阵:也就是一个二维数组,a[i][j]的值代表是否相连. 适用范围: 1 ...
- CTL_CODE说明
DeviceIoControl函数的第二个参数IoControlCode就是由CTL_CODE宏定义的,下边我们可以了解一下CTL_CODE的内容. CTL_CODE:用于创建一个唯一的32位系统I/ ...
- JMeter 定时器(Synchronizing Timer)之集合点应用
性能测试中我们经常提到一个概念就是“并发”,其实在实际真实的性能测试中是不存在真正的并发的.为了更真实的模拟对一个请求的并发测试场景,我们通常设置一个集合点,JMeter中提供了这样的一个功能设置. ...
- 安装vue,并新建一个项目
Vue.js (读音 /vjuː/,类似于 view) 是一套构建用户界面的渐进式框架.与其他重量级框架不同的是,Vue 采用自底向上增量开发的设计.Vue 的核心库只关注视图层,它不仅易于上手,还便 ...
- javascript 实现购物车页面
跟商城有关系的网站,难免会有购物车的结账界面. 我用javascript实现了增加数量/减少数量,实时计算总金额,删除该商品,选中商品/反选商品/全选/全反选...的操作. 欢迎指点!~ 效果如图:( ...