【P2015】二叉苹果树(树状DP)
蒟蒻弱弱的开始做树形DP了,虽然做了这道题还是有很多不懂得地方。
这道题大意就是有一棵树,只保留其中q条边,求出剩余边的最大权值。
然后开始考虑怎么做(其实是看着题解出思路。。。。),很容易可以想出DP数组应该代表什么含义。用f[i][j]表示第i个子节点保留下面j-1条边能达到的最大苹果数量。
为什么是j-1?因为如果选了i,那么就必须选上它上面那条来保证能够连到根上。
然后转移方程就有些想不到,题解是这样的:f[from][j]=max(f[from][j],f[v][k]+f[from][j-k]);
看了一会,明白了,实际上也好理解,跟一般的DP差的不是很多。
其中还有一个if判断,if((k!=j&&j!=1)||from==1),这个照题解说是要对节点1进行特判。只有1号节点不存在在它上方的边。所以1号节点可以无视前面k!=j&&j!=1的条件。
代码如下了:
【P2015】二叉苹果树(树状DP)的更多相关文章
- P2015 二叉苹果树,树形dp
P2015 二叉苹果树 题目大意:有一棵二叉树性质的苹果树,每一根树枝上都有着一些苹果,现在要去掉一些树枝,只留下q根树枝,要求保留最多的苹果数(去掉树枝后不一定是二叉树) 思路:一开始就很直接的想到 ...
- 洛谷 P2015 二叉苹果树(codevs5565) 树形dp入门
dp这一方面的题我都不是很会,所以来练(xue)习(xi),大概把这题弄懂了. 树形dp就是在原本线性上dp改成了在 '树' 这个数据结构上dp. 一般来说,树形dp利用dfs在回溯时进行更新,使用儿 ...
- P2015 二叉苹果树
P2015 二叉苹果树 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. 我们用一根树枝两端连接 ...
- 洛谷 P2015 二叉苹果树 (树上背包)
洛谷 P2015 二叉苹果树 (树上背包) 一道树形DP,本来因为是二叉,其实不需要用树上背包来干(其实即使是多叉也可以多叉转二叉),但是最近都刷树上背包的题,所以用了树上背包. 首先,定义状态\(d ...
- 洛谷P2015 二叉苹果树(树状dp)
题目描述 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. 我们用一根树枝两端连接的结点的编号来 ...
- 洛谷p2015二叉苹果树&yzoj1856多叉苹果树题解
二叉 多叉 有一棵苹果树,如果树枝有分叉,可以是分多叉,分叉数k>=0(就是说儿子的结点数大于等于0)这棵树共有N个结点(叶子点或者树枝分叉点),编号为1~N,树根编号一定是1.我们用一根树枝两 ...
- [Luogu2015]二叉苹果树(树形dp)
[Luogu2015] 二叉苹果树 题目描述 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. ...
- P2015 二叉苹果树[树形dp+背包]
题目描述 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. 我们用一根树枝两端连接的结点的编号来 ...
- 【Luogu】P2015二叉苹果树(DP,DFS)
题目链接 设f[i][j][k]表示给以i为根节点的子树分配j条可保留的树枝名额的时候,状态为k时能保留的最多苹果. k有三种情况. k=1:我只考虑子树的左叉,不考虑子树的右叉,此时子树能保留的最多 ...
- 洛谷P2015 二叉苹果树
题目描述 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. 我们用一根树枝两端连接的结点的编号来 ...
随机推荐
- 1.SpringMvc--初识springmvc
引自@精品唯居 springMvc是什么 springmvc是表现层的框架,是一个spring的表现层组件.是整个spring框架的一部分,但是也可以不使用springmvc.跟struts2框架功能 ...
- vue起手式
主要步骤 安装node 安装npm 安装vue-cli(vue命令行工具) 初始化一个vue项目 进行开发 # 安装node # 安装npm # 安装cnpm,在中国大陆防止被墙 # 安装git # ...
- HDU4771(2013 Asia Hangzhou Regional Contest )
http://acm.hdu.edu.cn/showproblem.php?pid=4771 题目大意: 给你一幅图(N*M)“@”是起点,"#"是墙,“.”是路,然后图上有K个珠 ...
- 【BZOJ3620】似乎在梦中见过的样子 KMP
[BZOJ3620]似乎在梦中见过的样子 Description “Madoka,不要相信 QB!”伴随着 Homura 的失望地喊叫,Madoka 与 QB 签订了契约. 这是 Modoka 的一个 ...
- C++常备知识总结
1.extern表示是外部函数或外部变量,比如: 1.extern void add(int x,inty);表示该函数主体不在当前模块中,在另一个模块中(文件)2.extern int total; ...
- jquery拓展插件开发
学习参考网址整理: http://blog.csdn.net/chenxi1025/article/details/52222327 http://www.cnblogs.com/ellisonDon ...
- 整理前端css/js/jq常见问题及解决方法(2)
移动端 手机 1.点击图片或按钮,选中状态影响到其他范围解决:html{-webkit-user-select:none}<meta name="msapplication-tap-h ...
- 使用QFileInfo类获取文件信息(在NTFS文件系统上,出于性能考虑,文件的所有权和权限检查在默认情况下是被禁用的,通过qt_ntfs_permission_lookup开启和操作。absolutePath()必须查询文件系统。而path()函数,可以直接作用于文件名本身,所以,path() 函数的运行会更快)
版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/Amnes1a/article/details/65444966QFileInfo类为我们提供了系统无 ...
- EChars文档
http://echarts.baidu.com/echarts2/doc/doc.html#SeriesMap http://echarts.baidu.com/option.html
- C++ Primer笔记14_面向对象程序设计
版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/scottly1/article/details/31371611 OOP概述 面向对象程序设计(ob ...