区间更新与单点更新最大的不同就在于Lazy思想:

http://blog.sina.com.cn/s/blog_a2dce6b30101l8bi.html

可以看这篇文章,讲得比较清楚

在具体使用上,因为是成段更新,目标区间内所有区间都需要更新,所以update时可以专门去找区间,不用一个个找点。所以可以不用node保存每个点左右范围,用a[]保存值,col[]保存标记反而比较方便

区间替换和区间增减在我的http://www.cnblogs.com/qlky/p/5690265.html中都写了,这里讲一下离散化:

离散化就是有时n个点的数据范围过大,或者过于分散。我们将节点映射到1-n中可以简化问题。基本过程如下:

  • 记录每个点的左端和右端,全部保存到一个数组a中并排序
  • 节点去重
  • 如果两个节点间距离大于1,添加一个中间节点
  • 再次对a排序
  • 在a中二分搜索原来每个点的左右端,将索引值保存在线段树中

示例代码:

sf("%d",&n);
int cnt = ,len = ;
for(i=;i<=n;i++)//记录头尾
{
sf("%d %d",&s1[i],&s2[i]);
a[++cnt] = s1[i];
a[++cnt] = s2[i];
}
sort(a+,a++cnt); for(i=;i<=cnt;i++)//去重
{
if(a[i]!=a[i-]) a[++len] = a[i];
} for(i=len;i>;i--)//添加中间值
{
if(a[i]-a[i-]>) a[++len] = a[i]-;
}
sort(a+,a++len); for(i=;i<=n;i++)
{
int l = BSearch(,len,s1[i]);
int r = BSearch(,len,s2[i]);
update(i,l,r,,len,);
}

以poj 2528为例:

http://blog.csdn.net/non_cease/article/details/7383736

题意:n(n<=10000)个人依次贴海报,给出每张海报所贴的范围li,ri(1<=li<=ri<=10000000)。

求出最后还能看见多少张海报。

输入:

1
5
1 4
2 6
8 10
3 4
7 10

解法:离散化,如下面的例子(题目的样例),因为单位1是一个单位长度,将下面的

1   2   3   4  6   7   8   10

—  —  —  —  —  —  —  —

1   2   3   4  5   6   7   8

离散化  X[1] = 1; X[2] = 2; X[3] = 3; X[4] = 4; X[5] = 6; X[7] = 8; X[8] = 10

于是将一个很大的区间映射到一个较小的区间之中了,然后再对每一张海报依次更新在宽度为1~8的墙上(用线段树),最后统计不同颜色的段数。

但是只是这样简单的离散化是错误的,

如三张海报为:1~10 1~4 6~10

离散化时 X[ 1 ] = 1, X[ 2 ] = 4, X[ 3 ] = 6, X[ 4 ] = 10
第一张海报时:墙的1~4被染为1;
第二张海报时:墙的1~2被染为2,3~4仍为1;
第三张海报时:墙的3~4被染为3,1~2仍为2。
最终,第一张海报就显示被完全覆盖了,于是输出2,但实际上明显不是这样,正确输出为3。

新的离散方法为:在相差大于1的数间加一个数,例如在上面1 4 6 10中间加5(算法中实际上1,4之间,6,10之间都新增了数的)

X[ 1 ] = 1, X[ 2 ] = 4, X[ 3 ] = 5, X[ 4 ] = 6, X[ 5 ] = 10

这样之后,第一次是1~5被染成1;第二次1~2被染成2;第三次4~5被染成3

最终,1~2为2,3为1,4~5为3,于是输出正确结果3。

#include <iostream>
#include <string>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <stack>
#include <queue>
#include <cctype>
#include <vector>
#include <iterator>
#include <set>
#include <map>
#include <sstream>
using namespace std; #define mem(a,b) memset(a,b,sizeof(a))
#define pf printf
#define sf scanf
#define spf sprintf
#define pb push_back
#define debug printf("!\n")
#define MAXN 10000 + 5
#define MAX(a,b) a>b?a:b
#define blank pf("\n")
#define LL long long
#define ALL(x) x.begin(),x.end()
#define INS(x) inserter(x,x.begin())
#define pqueue priority_queue
#define INF 0x3f3f3f3f int n,m; int a[MAXN<<],col[MAXN<<],ans; int s1[MAXN],s2[MAXN]; bool hh[MAXN]; void PushDown(int rt)
{
if(col[rt] != -)
{
col[rt<<] = col[rt<<|] = col[rt];
col[rt] = -;
}
} void update(int val,int L,int R,int l,int r,int rt)
{
if(L <= l && r <= R)
{
col[rt] = val;
return;
}
PushDown(rt);
int mid = (l + r)>>;
if (L <= mid)
{
update(val,L,R,l,mid,rt<<);
}
if(R > mid)
{
update(val,L,R,mid+,r,rt<<|);
}
} void query(int l,int r,int rt)
{
if(l==r)
{
if(!hh[col[rt]])
{
ans++;
hh[col[rt]] = true;
}
return;
}
PushDown(rt);
int mid = (l + r)>>;
query(l,mid,rt<<);
query(mid+,r,rt<<|);
} int BSearch(int lo, int hi, int v)
{
int mid;
while (lo <= hi)
{
mid = (lo + hi) >> ;
if (a[mid] == v) return mid;
else if (a[mid] > v) hi = mid - ;
else lo = mid + ;
}
return -;
} int main()
{
int t,i,kase=;
sf("%d",&t);
while(t--)
{
mem(col,-);
mem(a,);
mem(hh,false);
sf("%d",&n);
int cnt = ,len = ;
for(i=;i<=n;i++)//????
{
sf("%d %d",&s1[i],&s2[i]);
a[++cnt] = s1[i];
a[++cnt] = s2[i];
}
sort(a+,a++cnt); for(i=;i<=cnt;i++)//??
{
if(a[i]!=a[i-]) a[++len] = a[i];
} for(i=len;i>;i--)//?????
{
if(a[i]-a[i-]>) a[++len] = a[i]-;
}
sort(a+,a++len); for(i=;i<=n;i++)
{
int l = BSearch(,len,s1[i]);
int r = BSearch(,len,s2[i]);
update(i,l,r,,len,);
}
ans = ;
query(,len,);
pf("%d\n",ans);
}
return ;
}

ACM-线段树区间更新+离散化的更多相关文章

  1. POJ-2528 Mayor's posters (线段树区间更新+离散化)

    题目分析:线段树区间更新+离散化 代码如下: # include<iostream> # include<cstdio> # include<queue> # in ...

  2. POJ 2528 Mayor's posters (线段树区间更新+离散化)

    题目链接:http://poj.org/problem?id=2528 给你n块木板,每块木板有起始和终点,按顺序放置,问最终能看到几块木板. 很明显的线段树区间更新问题,每次放置木板就更新区间里的值 ...

  3. POJ2528:Mayor's posters(线段树区间更新+离散化)

    Description The citizens of Bytetown, AB, could not stand that the candidates in the mayoral electio ...

  4. POJ-2528 Mayor's posters(线段树区间更新+离散化)

    http://poj.org/problem?id=2528 https://www.luogu.org/problem/UVA10587 Description The citizens of By ...

  5. POJ2528 Mayor's posters(线段树&区间更新+离散化)题解

    题意:给一个区间,表示这个区间贴了一张海报,后贴的会覆盖前面的,问最后能看到几张海报. 思路: 之前就不会离散化,先讲一下离散化:这里离散化的原理是:先把每个端点值都放到一个数组中并除重+排序,我们就 ...

  6. POJ 2528 Mayor's posters(线段树/区间更新 离散化)

    题目链接: 传送门 Mayor's posters Time Limit: 1000MS     Memory Limit: 65536K Description The citizens of By ...

  7. POJ.2528 Mayor's posters (线段树 区间更新 区间查询 离散化)

    POJ.2528 Mayor's posters (线段树 区间更新 区间查询 离散化) 题意分析 贴海报,新的海报能覆盖在旧的海报上面,最后贴完了,求问能看见几张海报. 最多有10000张海报,海报 ...

  8. POJ 2528 Mayor's posters 【区间离散化+线段树区间更新&&查询变形】

    任意门:http://poj.org/problem?id=2528 Mayor's posters Time Limit: 1000MS   Memory Limit: 65536K Total S ...

  9. HDU 5023 A Corrupt Mayor's Performance Art(线段树区间更新)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5023 解题报告:一面墙长度为n,有N个单元,每个单元编号从1到n,墙的初始的颜色是2,一共有30种颜色 ...

  10. HDU 4902 Nice boat 2014杭电多校训练赛第四场F题(线段树区间更新)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4902 解题报告:输入一个序列,然后有q次操作,操作有两种,第一种是把区间 (l,r) 变成x,第二种是 ...

随机推荐

  1. 【AGC013D】Pilling Up dp

    Description 红蓝球各无限多个. 初始时随意地从中选择 n 个, 扔入箱子 初始有一个空的序列 接下来依次做 m 组操作, 每组操作为依次执行下述三个步骤 (1) 从箱子中取出一个求插入序列 ...

  2. luoguP2418 yyy loves OI IV

    https://www.luogu.org/problemnew/show/P2418 暴力 DP 做这题只有 30 分 考虑用线段树优化这个 DP 先处理一下整个房间都膜拜一个人的情况,然后将 1 ...

  3. yum及RPM安装

    yum及RPM安装 基本说明: 1.yum相当于windows上面的360软件中心 2.yum是redhat系列发行版的软件安装命令 debian系统用的是apt-get 3.yum安装软件的来源得存 ...

  4. ubtuntu 如何查看内存用量 mongostat详解

    free -h top free或者top或者cat /proc/meminfo mongostat是mongdb自带的状态检测工具,在命令行下使用.它会间隔固定时间获取mongodb的当前运行状态, ...

  5. angularJs表格效果

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <script sr ...

  6. Hibernate学习笔记(一)—— Hibernate概述及入门

    一.Hibernatea概述 1.1 什么是Hibernate? 在介绍什么是Hibernate之前,我们先讨论一下什么是框架?框架是用来提高开发效率的,框架封装好了一些功能,我们需要使用这些功能时, ...

  7. Idea 软件使用快捷键归纳

    <1>CTRL+P   方法参数提示 <2>ctrl+/ 单行注释 <3>Ctrl+Alt+M  IDEA 重复代码快速重构(抽取重复代码快捷键) <4> ...

  8. Bootstrap4 导航栏元素居右

    Bootstrap 4正解: .ml-auto元素居右 .mr-auto元素居左 在某度上查了半小时还是没查出什么名堂,搜出来的方法大多都是Bootstrap3的,实测pull-right或navba ...

  9. Java static{}语句块详解

    [转自] http://blog.csdn.net/lubiaopan/article/details/4802430 static{}(即static块),会在类被加载的时候执行且仅会被执行一次,一 ...

  10. 编辑距离及编辑距离算法(求字符的相似度) js版

    编辑距离概念描述: 编辑距离,又称Levenshtein距离,是指两个字串之间,由一个转成另一个所需的最少编辑操作次数.许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符. 例如 ...