A. Minimum Difficulty
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Mike is trying rock climbing but he is awful at it.

There are n holds on the wall, i-th hold is at height ai off the ground. Besides, let the sequence ai increase, that is, ai < ai + 1 for all ifrom 1 to n - 1; we will call such sequence a track. Mike thinks that the track a1, ..., an has difficulty . In other words, difficulty equals the maximum distance between two holds that are adjacent in height.

Today Mike decided to cover the track with holds hanging on heights a1, ..., an. To make the problem harder, Mike decided to remove one hold, that is, remove one element of the sequence (for example, if we take the sequence (1, 2, 3, 4, 5) and remove the third element from it, we obtain the sequence (1, 2, 4, 5)). However, as Mike is awful at climbing, he wants the final difficulty (i.e. the maximum difference of heights between adjacent holds after removing the hold) to be as small as possible among all possible options of removing a hold. The first and last holds must stay at their positions.

Help Mike determine the minimum difficulty of the track after removing one hold.

Input

The first line contains a single integer n (3 ≤ n ≤ 100) — the number of holds.

The next line contains n space-separated integers ai (1 ≤ ai ≤ 1000), where ai is the height where the hold number i hangs. The sequence ai is increasing (i.e. each element except for the first one is strictly larger than the previous one).

Output

Print a single number — the minimum difficulty of the track after removing a single hold.

Examples
input
3
1 4 6
output
5
input
5
1 2 3 4 5
output
2
input
5
1 2 3 7 8
output
4
Note

In the first sample you can remove only the second hold, then the sequence looks like (1, 6), the maximum difference of the neighboring elements equals 5.

In the second test after removing every hold the difficulty equals 2.

In the third test you can obtain sequences (1, 3, 7, 8), (1, 2, 7, 8), (1, 2, 3, 8), for which the difficulty is 4, 5 and 5, respectively. Thus, after removing the second element we obtain the optimal answer — 4.

题意:依次只删掉2-(n-1) 的点,找到每次相邻的最大值,再找最大值里的最小值;

思路:暴力,直接贴代码;

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define pi (4*atan(1.0))
#define eps 1e-14
const int N=2e5+,M=1e6+,inf=1e9+,mod=1e9+;
int a[N];
int main()
{
int n;
scanf("%d",&n);
for(int i=;i<=n;i++)
{
scanf("%d",&a[i]);
}
int ans=inf;
for(int i=;i<n;i++)
{
int maxx=;
for(int t=;t<=n;t++)
{
if(i==t)continue;
if(i+==t)
maxx=max(maxx,a[t]-a[t-]);
else
maxx=max(maxx,a[t]-a[t-]); }
ans=min(ans,maxx);
}
printf("%d\n",ans);
return ;
}
B. Secret Combination
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

You got a box with a combination lock. The lock has a display showing n digits. There are two buttons on the box, each button changes digits on the display. You have quickly discovered that the first button adds 1 to all the digits (all digits 9 become digits 0), and the second button shifts all the digits on the display one position to the right (the last digit becomes the first one). For example, if the display is currently showing number 579, then if we push the first button, the display will show 680, and if after that we push the second button, the display will show 068.

You know that the lock will open if the display is showing the smallest possible number that can be obtained by pushing the buttons in some order. The leading zeros are ignored while comparing numbers. Now your task is to find the desired number.

Input

The first line contains a single integer n (1 ≤ n ≤ 1000) — the number of digits on the display.

The second line contains n digits — the initial state of the display.

Output

Print a single line containing n digits — the desired state of the display containing the smallest possible number.

Examples
input
3
579
output
024
input
4
2014
output
0142

题意:你可以让每个数+1,再循环让每个数向后移一位,求最小;

思路:暴力,n*n*10;

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define pi (4*atan(1.0))
#define eps 1e-14
const int N=2e5+,M=1e6+,inf=1e9+,mod=1e9+;
char a[N];
string s[N];
int main()
{
int n;
scanf("%d",&n);
scanf("%s",a);
for(int i=;i<n;i++)
a[i+n]=a[i];
a[*n]=;
string minn="";
for(int i=;i<n;i++)
{
s[i].clear();
for(int t=i;t<i+n;t++)
s[i]+=a[t];
if(minn=="")
minn=s[i];
else if(minn>s[i])
minn=s[i];
for(int t=;t<=;t++)
{
for(int j=;j<n;j++)
{
s[i][j]+=;
if(s[i][j]>'')
s[i][j]-=;
}
if(minn>s[i])
minn=s[i];
}
}
cout<<minn<<endl;
return ;
}
C. Removing Columns
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

You are given an n × m rectangular table consisting of lower case English letters. In one operation you can completely remove one column from the table. The remaining parts are combined forming a new table. For example, after removing the second column from the table

abcd
edfg
hijk

we obtain the table:

acd
efg
hjk

A table is called good if its rows are ordered from top to bottom lexicographically, i.e. each row is lexicographically no larger than the following one. Determine the minimum number of operations of removing a column needed to make a given table good.

Input

The first line contains two integers  — n and m (1 ≤ n, m ≤ 100).

Next n lines contain m small English letters each — the characters of the table.

Output

Print a single number — the minimum number of columns that you need to remove in order to make the table good.

Examples
input
1 10
codeforces
output
0
input
4 4
case
care
test
code
output
2
input
5 4
code
forc
esco
defo
rces
output
4
Note

In the first sample the table is already good.

In the second sample you may remove the first and third column.

In the third sample you have to remove all the columns (note that the table where all rows are empty is considered good by definition).

Let strings s and t have equal length. Then, s is lexicographically larger than t if they are not equal and the character following the largest common prefix of s and t (the prefix may be empty) in s is alphabetically larger than the corresponding character of t.

题意:n个单词,每次可以删除一列,使得n个单词字典序;

思路:暴力;

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define pi (4*atan(1.0))
#define eps 1e-14
const int N=1e2+,M=1e6+,inf=1e9+,mod=1e9+;
int n,m;
int flag[N];
string a[N];
int check(int x)
{
string st[N];
for(int i=;i<n;i++)
{
st[i].clear();
for(int t=;t<=x;t++)
if(!flag[t])
st[i]+=a[i][t];
if(i)
{
if(st[i]<st[i-])
return ;
}
}
return ;
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<n;i++)
cin>>a[i];
int ans=;
for(int i=;i<m;i++)
{
if(check(i)==)
{
flag[i]=;
ans++;
}
}
printf("%d\n",ans);
return ;
}

Codeforces Round #283 (Div. 2) A ,B ,C 暴力,暴力,暴力的更多相关文章

  1. 暴力+构造 Codeforces Round #283 (Div. 2) C. Removing Columns

    题目传送门 /* 题意:删除若干行,使得n行字符串成递增排序 暴力+构造:从前往后枚举列,当之前的顺序已经正确时,之后就不用考虑了,这样删列最小 */ /*********************** ...

  2. 构造+暴力 Codeforces Round #283 (Div. 2) B. Secret Combination

    题目传送门 /* 构造+暴力:按照题目意思,只要10次加1就变回原来的数字,暴力枚举所有数字,string大法好! */ /************************************** ...

  3. Codeforces Round #283 (Div. 2) C. Removing Columns 暴力

    C. Removing Columns time limit per test 2 seconds memory limit per test 256 megabytes input standard ...

  4. Codeforces Round #283 Div.2 D Tennis Game --二分

    题意: 两个人比赛,给出比赛序列,如果为1,说明这场1赢,为2则2赢,假如谁先赢 t 盘谁就胜这一轮,谁先赢 s 轮则赢得整个比赛.求有多少种 t 和 s 的分配方案并输出t,s. 解法: 因为要知道 ...

  5. Codeforces Round #283 (Div. 2)

    A:暴力弄就好,怎么方便怎么来. B:我们知道最多加10次, 然后每次加1后我们求能移动的最小值,大概O(N)的效率. #include<bits/stdc++.h> using name ...

  6. codeforces 497c//Distributing Parts// Codeforces Round #283(Div. 1)

    题意:有n个区间[ai,bi],然后有n个人落在[ci,di],每个人能用ki次.问一种方式站满n个区间. 两种区间都用先x后y的升序排序.对于当前的区间[ai,bi],将ci值小于当前ai的全部放入 ...

  7. codeforces 497b// Tennis Game// Codeforces Round #283(Div. 1)

    题意:网球有一方赢t球算一场,先赢s场的获胜.数列arr(长度为n)记录了每场的胜利者,问可能的t和s. 首先,合法的场景必须: 1两方赢的场数不一样多. 2赢多的一方最后一场必须赢. 3最后一场必须 ...

  8. Codeforces Round #283 (Div. 2) B. Secret Combination 暴力水题

    B. Secret Combination time limit per test 2 seconds memory limit per test 256 megabytes input standa ...

  9. Codeforces Round #283 (Div. 2) A. Minimum Difficulty 暴力水题

    A. Minimum Difficulty time limit per test 2 seconds memory limit per test 256 megabytes input standa ...

随机推荐

  1. 【BZOJ2150】部落战争 最小流

    [BZOJ2150]部落战争 Description lanzerb的部落在A国的上部,他们不满天寒地冻的环境,于是准备向A国的下部征战来获得更大的领土. A国是一个M*N的矩阵,其中某些地方是城镇, ...

  2. n++ ++n

    n = 100 + m++ n = 100 +m; ++m n = 100 + ++m; ++m; n = 100 +m ;

  3. 新手之使用git

    本篇博客针对不会Git的小童鞋,大神们可以绕过,错误之处谢谢指正: 关于GitHub的强大此处不在说明,知道GitHub也有一段时间了,但是一直苦于不会使用. 本篇文章介绍的是如何将工程代码托管到上面 ...

  4. xenserver 模板导出导入

    由于业务需求,新增一台xenserver,需要将原先创建好的模板环境导入到新的母机上面,此处记录一下 1.导出模板 # 获取需要导出的模板uuid [root@localhost ~]# xe tem ...

  5. jQuery获取相邻标签的值

    <!-- Mazey's jQuery --><script language="javascript" type="text/javascript&q ...

  6. 基础篇-java开发

    开局必知 1.变量 在java中,以{}为作用域,所以就存在成员变量和局部变量之说 由于java是强类型语言,所以在申明变量的时候,必须指定类型 java里,一个变量有声明过程和初始化过程(也就是赋值 ...

  7. Windows Server 2012 下安装MySQL 5.6 X64位包

    WIN下的MySQL 5.6非MSI安装 查阅了官网一下,比较靠前的版本,都很少提供MSI 64位的版本,只有32位的版本,但是服务器上跑的自然是64位的系统为佳,在官网下了免编译的WIN 环境包,过 ...

  8. recorder.js

    (function (f) { if (typeof exports === "object" && typeof module !== "undefin ...

  9. 《Mining of Massive Datasets》笔记(一)

    数据挖掘基本概念 数据挖掘定义 最广为接受得到定义是,数据挖掘是数据"模型"的发现过程.而"模型"却可以有多种含义. 1)统计建模 统计学家认为数据挖掘就是统计 ...

  10. LeetCode-day01&02

    感觉还好,坚持住就行,毕竟智商不够 1. Length of Last Word求一个数组的最后一个单词的长度 2. Plus One   大数加1 3.  Add Binary 二进制加法 4. S ...