题目

有N堆石子,除了第一堆外,每堆石子个数都不少于前一堆的石子个数。两人轮流操作每次操作可以从一堆石子中移走任意多石子,但是要保证操作后仍然满足初始时的条件谁没有石子可移时输掉游戏。问先手是否必胜。

输入格式

第一行u表示数据组数。对于每组数据,第一行N表示石子堆数,第二行N个数ai表示第i堆石子的个数(a1<=a2<=……<=an)。 1<=u<=10 1<=n<=1000 0<=ai<=10000

输出格式

u行,若先手必胜输出TAK,否则输出NIE。

输入样例

2

2

2 2

3

1 2 4

输出样例

NIE

TAK

题解

首先我们了解一下阶梯游戏

有一个n级的阶梯,每级阶梯上有若干硬币。二人轮流操作,每次可以将某一级台阶上的若干个硬币移到下一级。无法操作者输

这是一个SG游戏,我们尝试把它转化为Nim游戏来求解

经分析可以发现这个游戏只与奇数阶有关:

①假若对手移动偶数阶,我们可以继续将其往下移动到偶数阶,直至0阶

②假若对手移动奇数阶,若移动第一阶,则相当于取走

③假若对手移动奇数阶,且将移动到偶数阶,而偶数阶的子最终将以①的方式到达0阶而不改变先后手,所以也相当于取走

至此,可以完全转化为只与奇数阶有关的Nim游戏,求奇数阶异或和,非0则必胜

本题

本题和阶梯游戏有什么关系呢?

由于石子数单调不减,每堆石子之间有个差值

当我们移走第i堆的x个石子时,i与i - 1的差值减少x,i+1与i的差值增加x,不就是阶梯游戏么?

注意:这里N与N-1的差值是第一级台阶,相当于反过来的阶梯游戏

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u]; k != -1; k = ed[k].nxt)
using namespace std;
const int maxn = 1005,maxm = 100005,INF = 1000000000;
inline int RD(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57) {if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57) {out = (out << 1) + (out << 3) + c - '0'; c = getchar();}
return out * flag;
}
int A[maxn],N;
int main(){
int T = RD();
while (T--){
N = RD(); int x = 0;
REP(i,N) A[i] = RD();
for (int i = N; i > 0; i--) A[i] -= A[i - 1];
for (int i = N; i > 0; i -= 2) x ^= A[i];
if (x) puts("TAK");
else puts("NIE");
}
return 0;
}

BZOJ1115 [POI2009]石子游戏Kam 【博弈论——阶梯游戏】的更多相关文章

  1. [bzoj1115][POI2009]石子游戏Kam_博弈论_阶梯博弈

    石子游戏 Kam bzoj-1115 POI-2009 题目大意:给定n堆石子,两个人轮流取石子.每堆石子的个数都不少于前一堆石子.每次取后也必须维持这个性质.问谁有必胜策略. 注释:$1\le ca ...

  2. [BZOJ1115][POI2009]石子游戏Kam解题报告|阶梯博弈

    有N堆石子,除了第一堆外,每堆石子个数都不少于前一堆的石子个数.两人轮流操作每次操作可以从一堆石子中移走任意多石子,但是要保证操作后仍然满足初始时的条件谁没有石子可移时输掉游戏.问先手是否必胜. 首先 ...

  3. bzoj 1115: [POI2009]石子游戏Kam -- 博弈论

    1115: [POI2009]石子游戏Kam Time Limit: 10 Sec  Memory Limit: 162 MB Description 有N堆石子,除了第一堆外,每堆石子个数都不少于前 ...

  4. BZOJ1115[POI2009]石子游戏——阶梯Nim游戏

    题目描述 有N堆石子,除了第一堆外,每堆石子个数都不少于前一堆的石子个数.两人轮流操作每次操作可以从一堆石子中移走任意多石子,但是要保证操作后仍然满足初始时的条件谁没有石子可移时输掉游戏.问先手是否必 ...

  5. bzoj1115: [POI2009]石子游戏Kam

    Description 有N堆石子,除了第一堆外,每堆石子个数都不少于前一堆的石子个数.两人轮流操作每次操作可以从一堆石子中移走任意多石子,但是要保证操作后仍然满足初始时的条件谁没有石子可移时输掉游戏 ...

  6. BZOJ 1115 [POI2009]石子游戏Kam(阶梯博弈)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1115 [题目大意] 有N堆石子,除了第一堆外,每堆石子个数都不少于前一堆的石子个数. ...

  7. BZOJ1115:[POI2009]石子游戏Kam (博弈论)

    挺水的 听说是阶梯nim和,就去看了一下,然后就会了= = 观察题目,发现拿第i堆棋子k个造成的影响就是第i+1堆棋子能多拿k个 可以把模型转化为,有n堆石子,每次从某一堆拿一个石子,放在下一堆中,不 ...

  8. 【博弈论】bzoj1115 [POI2009]石子游戏Kam

    差分后与阶梯博弈很类似. #include<cstdio> using namespace std; int n,T,a[1001],ans; int main() { scanf(&qu ...

  9. [BZOJ 1115] [POI2009] 石子游戏Kam 【阶梯博弈】

    题目链接:BZOJ - 1115 题目分析 首先看一下阶梯博弈: 阶梯博弈是指:初始有 n 堆石子,每次可以从任意的第 i 堆拿若干石子放到第 i - 1 堆.最终不能操作的人失败. 解法:将奇数位的 ...

随机推荐

  1. collections模块的使用

    1. Counter counter是collections中的一个模块, 它能够统计出字符串/文本中的每一个元素出现的次数, 并可以对结果进行进一步的处理. 使用方法 传入: 字符串 默认返回: C ...

  2. sftp上传到远程服务器

    开发遇到一个需求,需要将图片通过sftp上传到远程服务器上,之前没用过这个功能,折腾了我好几天才搞定,下面记录下我的处理方法: $sftp = 'ssh2.sftp://';//连接sftp $con ...

  3. symfony 安装使用(一)

    Symfony安装教程网上已经存在很多了,但是这里还是要写一下: 1.symfony 安装有以下几种,对应不同的环境 1.1通过composer 命令安装 composer create-projec ...

  4. connect() to unix:/var/run/php-fpm.sock failed (11: Resource temporarily unavailable)

    nginx + php做服务,在高并发的时候会出现一些错误  connect() to unix:/var/run/php-fpm.sock failed (11: Resource temporar ...

  5. HashMap JDK1.8实现原理

    HashMap概述 HashMap存储的是key-value的键值对,允许key为null,也允许value为null.HashMap内部为数组+链表的结构,会根据key的hashCode值来确定数组 ...

  6. scala映射和元组

    scala映射,是一对键值对,相当于java中的Map 对偶:由两个值构成的组,形式 : 值1->值2,值1和值2类型不一定要相同,可以理解为对偶就是一个key/value 映射就是对偶的集合 ...

  7. python 用装饰器写登录

    # 1.编写装饰器,为多个函数加上认证的功能(用户的账号密码来源于文件), # 要求登录成功一次,后续的函数都无需再输入用户名和密码 # FLAG = False # def login(func): ...

  8. 【7-10 PAT】树的遍历

    给定一棵二叉树的后序遍历和中序遍历,请你输出其层序遍历的序列.这里假设键值都是互不相等的正整数. 输入格式: 输入第一行给出一个正整数N(≤30),是二叉树中结点的个数.第二行给出其后序遍历序列.第三 ...

  9. POJ2553 汇点个数(强连通分量

    The Bottom of a Graph Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 12070   Accepted: ...

  10. 002---Python基本数据类型--字符串

    字符串 .caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1p ...