water

题目描述

有一块矩形土地被划分成\(n\times m\)个正方形小块。这些小块高低不平,每一小块都有自己的高度。水流可以由任意一块地流向周围四个方向的四块地中,但是不能直接流入对角相连的小块中。

一场大雨后,由于地势高低不同,许多地方都积存了不少降水。

给定每个小块的高度,求每个小块的积水高度。

注意:假设矩形地外围无限大且高度为\(0\)。

输入输出格式

输入格式

第一行包含两个非负整数\(n,m\)。

接下来\(n\)行每行\(m\)个整数表示第\(i\)行第\(j\)列的小块的高度。

输出格式

输出\(n\)行,每行\(m\)个由空格隔开的非负整数,表示每个小块的积水高度。

说明:

对于\(20\%\)的数据\(n,m\le 4\)

对于\(40\%\)的数据\(n,m\le 15\)

对于\(60\%\)的数据\(n,m\le 50\)

对于\(100\%\)的数据\(n,m\le 300\),|小块高度|\(\le 10^9\)。

在每一部分数据中,均有一半数据保证小块高度非负


有一种堆+遍历低点的做法,不太懂具体的复杂度,没写。

考虑一个点的边界最低点一定是从它出去到矩形外的每条四联通路径边权的最大值中的最小值。

把相邻两个块连边,权值为\(max \ height\)

这个东西可以把最小生成树求出来,然后就是询问树上两点间距离的最大值了。

发现有一个点是确定的,就是矩形外抽象的那个点。

为什么可以求最小生成树呢?其实货车运输那个题和这个差不多。

考虑某两个点有\(n\)条路径,现在把它们每条路径的最大值断开,这时候再保证联通,连上的就是最小的最大值了。


Code:

#include <cstdio>
#include <algorithm>
const int N=1e5;
int n,m,h[N],f[N],ans[N],tot;
int cal(int i,int j)
{
if(i==n+1||j==m+1||i==0||j==0) return 0;
return (i-1)*m+j;
}
struct node
{
int u,v,w;
bool friend operator <(node n1,node n2){return n1.w<n2.w;}
}e[N<<2];
int Next[N<<1],to[N<<1],edge[N<<1],head[N],cnt;
void add(int u,int v,int w)
{
to[++cnt]=v,edge[cnt]=w,Next[cnt]=head[u],head[u]=cnt;
}
int max(int x,int y){return x>y?x:y;}
int Find(int x){return f[x]=f[x]==x?x:Find(f[x]);}
void Merge(int x,int y){f[Find(x)]=Find(y);}
void krus()
{
for(int i=0;i<=m*n;i++) f[i]=i;
std::sort(e+1,e+1+tot);
for(int i=1;i<=tot;i++)
{
int u=e[i].u,v=e[i].v,w=e[i].w;
if(Find(u)!=Find(v)) Merge(u,v),add(u,v,w),add(v,u,w);
}
}
void dfs(int now,int fa)
{
for(int i=head[now];i;i=Next[i])
{
int v=to[i],w=edge[i];
if(v!=fa)
ans[v]=max(ans[now],w),dfs(v,now);
}
}
const int dx[5]={0,-1,0,1,0};
const int dy[5]={0,0,1,0,-1};
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
scanf("%d",h+cal(i,j));
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
{
int u=cal(i,j);
for(int k=1;k<=4;k++)
{
int v=cal(i+dx[k],j+dy[k]);
e[++tot]={u,v,max(h[u],h[v])};
}
}
krus();
dfs(0,0);
for(int i=1;i<=n*m;i++)
{
printf("%d ",ans[i]-h[i]);
if(i%m==0) printf("\n");
}
return 0;
}

2018.10.15

water 解题报告的更多相关文章

  1. [LeetCode]Container With Most Water, 解题报告

    前言 难怪LeetCode OJ在找工作时被很多人推荐,发现了这道最大蓄水题目就是美团的笔试最后一道题,当时我霸笔只有着一道题目没有答出来,因此也就没有获得面试机会,可惜了 题目 Given n no ...

  2. LeetCode: Trapping Rain Water 解题报告

    https://oj.leetcode.com/problems/trapping-rain-water/ Trapping Rain WaterGiven n non-negative intege ...

  3. CYJian的水题大赛2 解题报告

    这场比赛是前几天洛谷上 暮雪﹃紛紛dalao的个人公开赛,当时基本上都在水暴力分......也没有好好写正解(可能除了T1) 过了几天颓废的日子之后,本蒟蒻觉得应该卓越一下了qwq,所以就打算写一个解 ...

  4. 【LeetCode】Island Perimeter 解题报告

    [LeetCode]Island Perimeter 解题报告 [LeetCode] https://leetcode.com/problems/island-perimeter/ Total Acc ...

  5. CH Round #56 - 国庆节欢乐赛解题报告

    最近CH上的比赛很多,在此会全部写出解题报告,与大家交流一下解题方法与技巧. T1 魔幻森林 描述 Cortana来到了一片魔幻森林,这片森林可以被视作一个N*M的矩阵,矩阵中的每个位置上都长着一棵树 ...

  6. 二模13day1解题报告

    二模13day1解题报告 T1.发射站(station) N个发射站,每个发射站有高度hi,发射信号强度vi,每个发射站的信号只会被左和右第一个比他高的收到.现在求收到信号最强的发射站. 我用了时间复 ...

  7. BZOJ 1051 最受欢迎的牛 解题报告

    题目直接摆在这里! 1051: [HAOI2006]受欢迎的牛 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4438  Solved: 2353[S ...

  8. 习题:codevs 2822 爱在心中 解题报告

    这次的解题报告是有关tarjan算法的一道思维量比较大的题目(真的是原创文章,希望管理员不要再把文章移出首页). 这道题蒟蒻以前做过,但是今天由于要复习tarjan算法,于是就看到codevs分类强联 ...

  9. 习题:codevs 1035 火车停留解题报告

    本蒟蒻又来写解题报告了.这次的题目是codevs 1035 火车停留. 题目大意就是给m个火车的到达时间.停留时间和车载货物的价值,车站有n个车道,而火车停留一次车站就会从车载货物价值中获得1%的利润 ...

随机推荐

  1. Docker(二):Hello World

    Docker 安装 这里以CentOS7 为例,其他安装教程可以自行通过其他路径了解. Docker 运行在CentOS7 上要求,系统为64位.系统内核版本为3.10以上. Docker 运行在 C ...

  2. Python序列删除重复数据

    ## 对于列表来说,若不保持原有顺序,可以直接转换为set删除重复数据 nums = [1,2,32,2,2,4,3,2,3,42] nums = list(set(nums)) print(nums ...

  3. 【PHP】PHP常用数组(Array)函数整理

    整理了一份PHP开发中数组操作大全,包含有数组操作的基本函数.数组的分段和填充.数组与栈.数组与列队.回调函数.排序.计算.其他的数组函数等. 一.数组操作的基本函数 数组的键名和值 array_va ...

  4. 2019-04-10 python入门学习——教材和工具准备

    # 从决定学习编程语言到正式做出计划挤出空余时间,历经一年半,因工作原因及生活原因不断搁浅,从湖北到浙江再回湖北,暂时稳定在一家小公司,从日常加班中压缩时间学习,于此记录学习进度.学习问题,在此过程中 ...

  5. Python特别low的一个文字游戏

    闲来无事 ,调侃舍友的游戏 import os class Role(): def __init__(self,name,sex,fighting): self.name=name self.sex= ...

  6. rails小技巧之分组查询统计并去重

    分组查询并统计 SpecialGroup.group(:special_type).count select special_type,count(*) from special_groups gro ...

  7. YUM工具使用

    一.yum命令概述: 1.简介: yum命令时在Fedora和RedHat以及SUSE中基于rpm的软件包管理器,它可以使系统管理人员交互和自动化地更细与管理RPM软件包,能够从指定的服务器自动下载R ...

  8. (数据科学学习手札15)DBSCAN密度聚类法原理简介&Python与R的实现

    DBSCAN算法是一种很典型的密度聚类法,它与K-means等只能对凸样本集进行聚类的算法不同,它也可以处理非凸集. 关于DBSCAN算法的原理,笔者觉得下面这篇写的甚是清楚练达,推荐大家阅读: ht ...

  9. 38-JWT 设计解析及定制

    可去官网下载Security项目查看源码 只需修改 AddJwtBearer中的行为即可 public void ConfigureServices(IServiceCollection servic ...

  10. SAPの販売管理で、価格設定をするまでの関連カスタマイズ画面

    この記事ではSAP SDで.価格を決めるまでに必要な設定画面について述べています. condition table (条件テーブル) 条件レコードのキー項目を定義したもの.3桁の数字で名前がついている ...