【BZOJ 1592】[Usaco2008 Feb]Making the Grade 路面修整 dp优化之转移变状态
我们感性可证离散(不离散没法做),于是我们就有了状态转移的思路(我们只考虑单不减另一个同理),f[i][j]到了第i块高度为j的最小话费,于是我们就可以发现f[i][j]=Min(f[i-1][k])+|a[i]-j|(k<=j),于是我们的思路就去了各种数据结构…….然后我们发现对于这些转移就是在记录小于等于,那么我们直接带状态里体现这一点就可以了,而不是在转移的时候,我们f[i][j]表示到了第i个点小于等于j的高度的最小花费,这样我们就n^2了。
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define N 2010
using namespace std;
inline int read()
{
register int sum=;register char ch=getchar();
while(ch<''||ch>'')ch=getchar();
while(ch>=''&&ch<='')sum=(sum<<)+(sum<<)+ch-'',ch=getchar();
return sum;
}
int a[N],f[N][N],ans,n,pos[N],len,Hash[N];
int comp(const int x,const int y){
return a[x]<a[y];
}
inline int Min(int x,int y){
return x<y?x:y;
}
inline int Abs(int x){
return x<?-x:x;
}
inline int get_Min(){
memset(f,0x7f,sizeof(f));register int ans=0x7fffffff;
for(register int i=;i<=len;i++)f[][i]=Min(f[][i-],Abs(Hash[i]-Hash[a[]]));
for(register int i=;i<=n;i++)
for(register int j=;j<=len;j++)
f[i][j]=Min(f[i][j-],f[i-][j]+Abs(Hash[j]-Hash[a[i]]));
for(register int i=;i<=len;i++)ans=Min(ans,f[n][i]);
return ans;
}
inline int get_Max(){
memset(f,0x7f,sizeof(f));register int ans=0x7fffffff;
for(register int i=;i<=len;i++)f[][i]=Min(f[][i+],Abs(Hash[i]-Hash[a[]]));
for(register int i=;i<=n;i++)
for(register int j=len;j>;j--)
f[i][j]=Min(f[i][j+],f[i-][j]+Abs(Hash[j]-Hash[a[i]]));
for(register int i=;i<=len;i++)ans=Min(ans,f[n][i]);
return ans;
}
int main(){
n=read();for(register int i=;i<=n;i++)a[i]=read(),pos[i]=i;
sort(pos+,pos+n+,comp);
for(register int i=;i<=n;i++)
if(i==||a[pos[i]]!=a[pos[i-]])Hash[++len]=a[pos[i]],a[pos[i]]=len;
else a[pos[i]]=len;
printf("%d",Min(get_Min(),get_Max()));
}
【BZOJ 1592】[Usaco2008 Feb]Making the Grade 路面修整 dp优化之转移变状态的更多相关文章
- BZOJ 1592: [Usaco2008 Feb]Making the Grade 路面修整( dp )
最优的做法最后路面的高度一定是原来某一路面的高度. dp(x, t) = min{ dp(x - 1, k) } + | H[x] - h(t) | ( 1 <= k <= t ) 表示前 ...
- BZOJ 1592: [Usaco2008 Feb]Making the Grade 路面修整
Description FJ打算好好修一下农场中某条凹凸不平的土路.按奶牛们的要求,修好后的路面高度应当单调上升或单调下降,也就是说,高度上升与高度下降的路段不能同时出现在修好的路中. 整条路被分成了 ...
- bzoj 1592: [Usaco2008 Feb]Making the Grade 路面修整【dp】
因为是单调不降或单调不升,所以所有的bi如果都是ai中出现过的一定不会变差 以递增为例,设f[i][j]为第j段选第i大的高度,预处理出s[i][j]表示选第i大的时,前j个 a与第i大的值的差的绝对 ...
- 1592: [Usaco2008 Feb]Making the Grade 路面修整
1592: [Usaco2008 Feb]Making the Grade 路面修整 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 428 Solv ...
- 【BZOJ】1592: [Usaco2008 Feb]Making the Grade 路面修整
[算法]动态规划DP [题解] 题目要求不严格递增或不严格递减. 首先修改后的数字一定是原来出现过的数字,这样就可以离散化. f[i][j]表示前i个,第i个修改为第j个数字的最小代价,a表示排序后数 ...
- 【贪心】bzoj1592: [Usaco2008 Feb]Making the Grade 路面修整
贪心的经典套路:替换思想:有点抽象 Description FJ打算好好修一下农场中某条凹凸不平的土路.按奶牛们的要求,修好后的路面高度应当单调上升或单调下降,也 就是说,高度上升与高度下降的路段不能 ...
- 2014.6.14模拟赛【bzoj1592】[Usaco2008 Feb]Making the Grade 路面修整
Description FJ打算好好修一下农场中某条凹凸不平的土路.按奶牛们的要求,修好后的路面高度应当单调上升或单调下降,也就是说,高度上升与高度下降的路段不能同时出现在修好的路中. 整条路被分成了 ...
- 【bzoj1592】[Usaco2008 Feb]Making the Grade 路面修整
FJ打算好好修一下农场中某条凹凸不平的土路.按奶牛们的要求,修好后的路面高度应当单调上升或单调下降,也就是说,高度上升与高度下降的路段不能同时出现在修好的路中. 整条路被分成了N段,N个整数A_1, ...
- BZOJ1592 POJ3666 [Usaco2008 Feb]Making the Grade 路面修整 左偏树 可并堆
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - POJ3666 题目传送门 - BZOJ1592 题意概括 整条路被分成了N段,N个整数A_1, ... , ...
随机推荐
- Laravel5.x 封装的上传图片类
图片缩放需要用conposer安装 ImageManagerStatic类 可参考下面的地址安装: https://www.jb51.net/article/128159.htm 控制器里: 控制器里 ...
- 事物总线模式实例——EventBus实例详解
事件总线模式是一种广泛运用于安卓开发之中的一种软件架构模式,而事件总线模式在安卓开发中最广泛的应用莫过于AndroidStudio提供的EventBus,所以我就EventBus来谈谈对事件总线模式的 ...
- python与mysql的连接过程
1.cmd---pip3 install PyMySQL2.>>>import pymysql3.mysql>create database bookdb character ...
- Kubernetes-DNS
Kubernetes提供的虚拟DNS服务名为skydns,由四个组件组成: etcd:DNS存储 kube2sky:将Kubernetes Master中的Service(服务)注册到etcd sky ...
- SELECT(データ取得)
WHERE 句は.満たすべき条件を指定することにより選択される行数を制限します. WHERE 句は.SELECT 命令と同様に OPEN CURSOR.UPDATE.および DELETE 命令でも使用 ...
- fiddler手机抓包配置方法
一.下载工具包 百度搜索”fiddler 下载“ ,安装最新版本 下载的软件安装包为“fiddler_4.6.20171.26113_setup.exe”格式,双击安装.安装成功,在“开始”-“所有程 ...
- 2 socket UDP通信
1 socket套接字 class 对象 In [1]: import socket In [2]: help(socket.socket) class socket(_socket.socket) ...
- guacamole实现剪切复制
主要功能是实现把堡垒机的内容复制到浏览器端,把浏览器端的文本复制到堡垒机上. 借助一个中间的文本框,现将堡垒机内容复制到一个文本框,然后把文本框内容复制出来.或者将需要传递到堡垒机的内容先复制到文本框 ...
- mac 安装php redis扩展
git clone git://github.com/nicolasff/phpredis.git cd ./phpredis phpize 如果报 Cannot find autoconf. Ple ...
- python保留关键字和常用关键字
python保留关键字和常用关键字如下: 上图是python3中的关键字,python2.7中的关键字部分会有区别,具体在自己打印输出查看: import keyword print ' '.join ...