[bzoj2631]tree——lct
Brief Description
一棵n个点的树,每个点的初始权值为1。对于这棵树有q个操作,每个操作为以下四种操作之一:
- u v c:将u到v的路径上的点的权值都加上自然数c;
- u1 v1 u2 v2:将树中原有的边(u1,v1)删除,加入一条新边(u2,v2),保证操作完之后仍然是一棵树;
- u v c:将u到v的路径上的点的权值都乘上自然数c;
/ u v:询问u到v的路径上的点的权值和,求出答案对于51061的余数。
Algorithm Design
lct裸题。考察标记下传,先下传乘法,再下传加法。
Code
#include <algorithm>
#include <cctype>
#include <cstdio>
#define ll unsigned int
const int maxn = 100005;
#define mod 51061
inline int read() {
int x = 0, f = 1;
char ch = getchar();
while (!isdigit(ch)) {
if (ch == '-') {
f = -1;
}
ch = getchar();
}
while (isdigit(ch)) {
x = x * 10 + ch - '0';
ch = getchar();
}
return x * f;
}
int n, m, top, cnt;
int ch[maxn][2], fa[maxn], size[maxn];
bool rev[maxn];
ll sum[maxn], val[maxn], at[maxn], mt[maxn];
inline bool isroot(int x) { return ch[fa[x]][0] != x && ch[fa[x]][1] != x; }
inline void cal(int k, int m, int a) {
if (k) {
val[k] = (val[k] * m + a) % mod;
sum[k] = (sum[k] * m + a * size[k]) % mod;
at[k] = (at[k] * m + a) % mod;
mt[k] = (mt[k] * m) % mod;
}
}
inline void update(int k) {
int l = ch[k][0], r = ch[k][1];
sum[k] = (sum[l] + sum[r] + val[k]) % mod;
size[k] = (size[l] + size[r] + 1) % mod;
}
inline void pushdown(int k) {
int &l = ch[k][0], &r = ch[k][1];
if (rev[k]) {
rev[k] ^= 1, rev[l] ^= 1, rev[r] ^= 1;
std::swap(l, r);
}
int m = mt[k], a = at[k];
mt[k] = 1, at[k] = 0;
if (m != 1 || a != 0) {
cal(l, m, a);
cal(r, m, a);
}
}
inline void zig(int x) {
int y = fa[x], z = fa[y], l = (ch[y][1] == x), r = l ^ 1;
if (!isroot(y))
ch[z][ch[z][1] == y] = x;
fa[ch[y][l] = ch[x][r]] = y;
fa[ch[x][r] = y] = x;
fa[x] = z;
update(y);
update(x);
}
inline void splay(int x) {
int s[maxn], top = 0;
s[++top] = x;
for (int i = x; !isroot(i); i = fa[i])
s[++top] = fa[i];
while (top)
pushdown(s[top--]);
for (int y; !isroot(x); zig(x))
if (!isroot(y = fa[x]))
zig((ch[fa[y]][0] == y) == (ch[y][0] == x) ? y : x);
}
inline void access(int x) {
for (int t = 0; x; t = x, x = fa[x]) {
splay(x);
ch[x][1] = t;
update(x);
}
}
inline void makeroot(int x) {
access(x);
splay(x);
rev[x] ^= 1;
}
inline void split(int x, int y) {
makeroot(y);
access(x);
splay(x);
}
inline void link(int x, int y) {
makeroot(x);
fa[x] = y;
}
inline void cut(int x, int y) {
makeroot(x);
access(y);
splay(y);
ch[y][0] = fa[x] = 0;
}
int main() {
#ifndef ONLINE_JUDGE
freopen("input", "r", stdin);
#endif
n = read(), m = read();
int u, v, c;
for (int i = 1; i <= n; i++)
val[i] = sum[i] = size[i] = mt[i] = 1;
for (int i = 1; i < n; i++) {
u = read(), v = read();
link(u, v);
}
char st[5];
while (m--) {
scanf("%s", st);
u = read(), v = read();
if (st[0] == '+') {
c = read();
split(u, v);
cal(u, 1, c);
}
if (st[0] == '-') {
cut(u, v);
u = read(), v = read(), link(u, v);
}
if (st[0] == '*') {
c = read();
split(u, v);
cal(u, c, 0);
}
if (st[0] == '/') {
split(u, v);
printf("%d\n", sum[u]);
}
}
}
[bzoj2631]tree——lct的更多相关文章
- bzoj2631: tree lct
要打mul和add的lct 50000+的mod用unsigned int好了TAT (坑爹没打pc('\n');(静态)调了好久,样例竟然只输出一个,orz,也不提示PE T_T) #include ...
- bzoj2631 tree LCT 区间修改,求和
tree Time Limit: 30 Sec Memory Limit: 128 MBSubmit: 4962 Solved: 1697[Submit][Status][Discuss] Des ...
- 【bzoj2631】tree LCT
题目描述 一棵n个点的树,每个点的初始权值为1.对于这棵树有q个操作,每个操作为以下四种操作之一:+ u v c:将u到v的路径上的点的权值都加上自然数c:- u1 v1 u2 v2:将树中原有的边( ...
- BZOJ2631 tree(伍一鸣) LCT 秘制标记
这个题一看就是裸地LCT嘛,但是我wa了好几遍,这秘制标记...... 注意事项:I.*对+有贡献 II.先下传*再下传+(因为我们已经维护了+,不能再让*对+产生贡献)III.维护+用到size # ...
- [BZOJ2631]tree 动态树lct
2631: tree Time Limit: 30 Sec Memory Limit: 128 MBSubmit: 5171 Solved: 1754[Submit][Status][Discus ...
- BZOJ2631 tree 【LCT】
题目 一棵n个点的树,每个点的初始权值为1.对于这棵树有q个操作,每个操作为以下四种操作之一: + u v c:将u到v的路径上的点的权值都加上自然数c: - u1 v1 u2 v2:将树中原有的边( ...
- BZOJ2631: tree(LCT)
Description 一棵n个点的树,每个点的初始权值为1.对于这棵树有q个操作,每个操作为以下四种操作之一: + u v c:将u到v的路径上的点的权值都加上自然数c: - u1 v1 u2 v2 ...
- bzoj2631: tree
#include <iostream> #include <cstdio> #include <cstring> #include <cmath> #i ...
- BZOJ2631——tree
1.题目大意:bzoj1798的lct版本 2.分析:这个把线段树改成splay就好 #include <stack> #include <cstdio> #include & ...
随机推荐
- 一步一步构建手机WebApp开发——环境搭建篇
从2007年,乔布斯带来了第一代Iphone手机,整个移动互联网发生天翻地覆的变化,也同时证明了乔布斯的一句名言:“再一次改变世界”. 在当今的移动互联网,手机App居多,很多App对移动设备的要求也 ...
- 修改有数据oracle字段类型 从number转为varchar
--修改有数据oracle字段类型 从number转为varchar--例:修改ta_sp_org_invoice表中RESCUE_PHONE字段类型,从number转为varchar --step1 ...
- [转载]压力测试工具siege的用法
压力测试工具siege 原文:http://blog.csdn.net/qingye2008/article/details/34500949 Siege是Linux下的一个web系统的压力测试工具, ...
- node gyp的问题
解决 binding.gyp not found (xxx/xxx/xxx) while trying to load binding.gyp 问题 在使用ccap图形验证码模块时遇到这个问题 Err ...
- MySQL统计数据库表大小
use information_schema; SELECT TABLE_NAME, (DATA_LENGTH/1024/1024) as DataM , (INDEX_LENGTH/1024/102 ...
- php+Mysql分页 类和引用详解
一下内容为专用于分页的类以及具体的方法和解析.<?php class Page { private $total; //数据表中总记录数 private $listRows; //每页显示行数 ...
- 在使用easyUI时,js,css样式都加载了 但是图标加载不了
可能的问题:web.xml 配置了这些 <servlet-mapping> <servlet-name>default</servlet-name> <url ...
- iOS-UIImageView播放动画
NSArray *gifArray = [NSArray arrayWithObjects:[UIImage imageNamed:@"lanya1"],[UIImage imag ...
- javascript中window.location.search方法简介
window.location.search方法是截取当前url中"?"后面的字符串,示例如下: 例如:http://www.firefoxchina.cn/?ntab截取后的字符 ...
- 洛谷 P2893 [USACO08FEB]修路Making the Grade 解题报告
P2893 [USACO08FEB]修路Making the Grade 题目描述 A straight dirt road connects two fields on FJ's farm, but ...