题目链接:https://vjudge.net/problem/UVA-11426

题目大意: 给出整数n∈[2,4000000],求解∑gcd(i,j),其中(i,j)满足1≤i<j≤n.

的确没有想到是欧拉函数,这怎么会想到欧拉函数呢?  又不是要我们求所有gcd为1的个数  那些gcd不为1的怎么办呢?  当时怎么就没想到呢  除过去不就变为1了吗  自己是真的菜。。。

还是要多做题,把思维开阔起来!!!

思路在代码中  直接看代码:

/**
欧拉函数三个性质
是素数的话 欧拉函数值等于它本身-1
如果a是素数 b%a==0 则phi[b*a]=phi[b]*a
如果b%a!=0 则phi[b*a]=phi[b]*phi[a]
*/
#include<iostream>
#include<cstdio>
using namespace std;
typedef long long LL;
const int maxn=4e6+;
LL N;
LL phi[maxn],vis[maxn],p[maxn];//欧拉函数值 是否是素数 存素数
LL f[maxn],ans[maxn];
void Init()//求欧拉函数值
{
phi[]=;
int num=;
for(int i=;i<maxn;i++)
{
if(!vis[i])//是素数
{
p[num++]=i;
phi[i]=i-;//素数的欧拉函数值就等于它的值-1
}
for(int j=;j<num&&p[j]*i<maxn;j++)
{
vis[p[j]*i]=true;//肯定不是素数
if(i%p[j]==)
{
phi[i*p[j]]=p[j]*phi[i];
break;
}
else phi[i*p[j]]=phi[i]*phi[p[j]];
}
} // for(int i=1;i<=10;i++) cout<<i<<":"<<phi[i]<<" ";
return ;
}
/** 假设n等于4
(1,2) (2,3) (3,4)
(1,3) (2,4)
(1,4) 假设f[n]=(1,n)+(2,n)+···(n-1,n)
则 ans=f[2]+f[3]+···+f[n] 所以我们要求的就是f[n] 假设 gcd(1,n) gcd(2,n) ··· gcd(n-1,n)中等于i的有si个
那么gcd(s1,n)=i gcd(s2,n)=i gcd(si,n)=i
则 gcd(s1/i,n/i)=1 gcd(s2/i,n/i)=1 gcd(si/i,n/i)=1
这岂不是转换成了 总个数phi[n/i]的情形了 所以f[n]=i*phi[n/i] */
void solve()//存f[n]
{
phi[]=;
for(int i=;i<maxn;i++)//遍历i的值 同时得到f[n]的部分值
{
for(int j=i;j<maxn;j+=i)//遍历n的值
{
f[j]+=i*phi[j/i];
}
}
for(int i=;i<maxn;i++) ans[i]=ans[i-]+f[i];
return ;
}
int main()
{
Init();
solve();
//while(scanf("%lld",&N)!=EOF)
while(cin>>N)
{
if(N==) break;
cout<<ans[N]<<endl;
//printf("%lld\n",ans[N]);
}
return ;
}

GCD - Extreme(欧拉函数变形)的更多相关文章

  1. 【BZOJ】2818: Gcd(欧拉函数+质数)

    题目 传送门:QWQ 分析 仪仗队 呃,看到题后感觉很像上面的仪仗队. 仪仗队求的是$ gcd(a,b)=1 $ 本题求的是$ gcd(a,b)=m $ 其中m是质数 把 $ gcd(a,b)=1 $ ...

  2. hdu2588 GCD (欧拉函数)

    GCD 题意:输入N,M(2<=N<=1000000000, 1<=M<=N), 设1<=X<=N,求使gcd(X,N)>=M的X的个数.  (文末有题) 知 ...

  3. uva11426 gcd、欧拉函数

    题意:给出N,求所有满足i<j<=N的gcd(i,j)之和 这题去年做过一次... 设f(n)=gcd(1,n)+gcd(2,n)+......+gcd(n-1,n),那么answer=S ...

  4. HDU 1695 GCD (欧拉函数+容斥原理)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  5. HDU 1787 GCD Again(欧拉函数,水题)

    GCD Again Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

  6. hdu 4983 Goffi and GCD(欧拉函数)

    Problem Description Goffi is doing his math homework and he finds an equality on his text book: gcd( ...

  7. hdu 1695 GCD(欧拉函数+容斥)

    Problem Description Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD( ...

  8. HDU 1695 GCD(欧拉函数+容斥原理)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意:x位于区间[a, b],y位于区间[c, d],求满足GCD(x, y) = k的(x, ...

  9. GCD(欧拉函数)

    GCD Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submissio ...

随机推荐

  1. sql多表链接之三表连接查询

    表与表之间的关系如下 查询条件:根据员工表的enployee_id 查找他在哪个部门,他在哪个城市工作. 查询语句:

  2. Matlab Simulink

  3. Spring MVC Hibernate MySQL Integration(集成) CRUD Example Tutorial【摘】

    Spring MVC Hibernate MySQL Integration(集成) CRUD Example Tutorial We learned how to integrate Spring ...

  4. exe文件停止运行的情况

    1.程序问题. 2.服务器问题. 3.内存占用问题. 一般情况下,关掉程序,重新打开就可以. 上述情况不行,则关掉电脑,重启. 再不行,Ctr + Alt + Del关掉程序的进程. 不行, Win ...

  5. oracle 中 创建序列sequence

    drop sequence SEQ_YCXWP_CGD; create sequence SEQ_YCXWP_CGD increment start nomaxvalue;

  6. .net Reflection(反射)- 二

    反射 Reflection 中访问方法 新建一个ClassLibrary类库: public class Student { public string Name { get; set; } publ ...

  7. select2的搜索框不能输入搜索内容

    按照select2官网配置完后,搜索框弹出后无法输入内容,究竟怎么回事,于是在其他页面尝试了select2,发现可以啊,为什么在这个地方不可以,终于找到了造成这个问题的不同之处:select2在模态对 ...

  8. WeStrom自定义设置修改快捷键

    按照下图操作,不BB: 终极懒人设置:!!!

  9. 80端口被system(pid=4)占用

    1.查看80端口被哪个进程占用,cmd->netstat -ano | findstr 80 2.cmd->tasklist列出当前运行中的进程,或在任务管理器中查看pid为4的进程. 经 ...

  10. 【noip2017】【Luogu3960】列队 线段树

    题目描述 Sylvia 是一个热爱学习的女♂孩子. 前段时间,Sylvia 参加了学校的军训.众所周知,军训的时候需要站方阵. Sylvia 所在的方阵中有 n \times mn×m 名学生,方阵的 ...