题目链接:https://vjudge.net/problem/UVA-11426

题目大意: 给出整数n∈[2,4000000],求解∑gcd(i,j),其中(i,j)满足1≤i<j≤n.

的确没有想到是欧拉函数,这怎么会想到欧拉函数呢?  又不是要我们求所有gcd为1的个数  那些gcd不为1的怎么办呢?  当时怎么就没想到呢  除过去不就变为1了吗  自己是真的菜。。。

还是要多做题,把思维开阔起来!!!

思路在代码中  直接看代码:

/**
欧拉函数三个性质
是素数的话 欧拉函数值等于它本身-1
如果a是素数 b%a==0 则phi[b*a]=phi[b]*a
如果b%a!=0 则phi[b*a]=phi[b]*phi[a]
*/
#include<iostream>
#include<cstdio>
using namespace std;
typedef long long LL;
const int maxn=4e6+;
LL N;
LL phi[maxn],vis[maxn],p[maxn];//欧拉函数值 是否是素数 存素数
LL f[maxn],ans[maxn];
void Init()//求欧拉函数值
{
phi[]=;
int num=;
for(int i=;i<maxn;i++)
{
if(!vis[i])//是素数
{
p[num++]=i;
phi[i]=i-;//素数的欧拉函数值就等于它的值-1
}
for(int j=;j<num&&p[j]*i<maxn;j++)
{
vis[p[j]*i]=true;//肯定不是素数
if(i%p[j]==)
{
phi[i*p[j]]=p[j]*phi[i];
break;
}
else phi[i*p[j]]=phi[i]*phi[p[j]];
}
} // for(int i=1;i<=10;i++) cout<<i<<":"<<phi[i]<<" ";
return ;
}
/** 假设n等于4
(1,2) (2,3) (3,4)
(1,3) (2,4)
(1,4) 假设f[n]=(1,n)+(2,n)+···(n-1,n)
则 ans=f[2]+f[3]+···+f[n] 所以我们要求的就是f[n] 假设 gcd(1,n) gcd(2,n) ··· gcd(n-1,n)中等于i的有si个
那么gcd(s1,n)=i gcd(s2,n)=i gcd(si,n)=i
则 gcd(s1/i,n/i)=1 gcd(s2/i,n/i)=1 gcd(si/i,n/i)=1
这岂不是转换成了 总个数phi[n/i]的情形了 所以f[n]=i*phi[n/i] */
void solve()//存f[n]
{
phi[]=;
for(int i=;i<maxn;i++)//遍历i的值 同时得到f[n]的部分值
{
for(int j=i;j<maxn;j+=i)//遍历n的值
{
f[j]+=i*phi[j/i];
}
}
for(int i=;i<maxn;i++) ans[i]=ans[i-]+f[i];
return ;
}
int main()
{
Init();
solve();
//while(scanf("%lld",&N)!=EOF)
while(cin>>N)
{
if(N==) break;
cout<<ans[N]<<endl;
//printf("%lld\n",ans[N]);
}
return ;
}

GCD - Extreme(欧拉函数变形)的更多相关文章

  1. 【BZOJ】2818: Gcd(欧拉函数+质数)

    题目 传送门:QWQ 分析 仪仗队 呃,看到题后感觉很像上面的仪仗队. 仪仗队求的是$ gcd(a,b)=1 $ 本题求的是$ gcd(a,b)=m $ 其中m是质数 把 $ gcd(a,b)=1 $ ...

  2. hdu2588 GCD (欧拉函数)

    GCD 题意:输入N,M(2<=N<=1000000000, 1<=M<=N), 设1<=X<=N,求使gcd(X,N)>=M的X的个数.  (文末有题) 知 ...

  3. uva11426 gcd、欧拉函数

    题意:给出N,求所有满足i<j<=N的gcd(i,j)之和 这题去年做过一次... 设f(n)=gcd(1,n)+gcd(2,n)+......+gcd(n-1,n),那么answer=S ...

  4. HDU 1695 GCD (欧拉函数+容斥原理)

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  5. HDU 1787 GCD Again(欧拉函数,水题)

    GCD Again Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

  6. hdu 4983 Goffi and GCD(欧拉函数)

    Problem Description Goffi is doing his math homework and he finds an equality on his text book: gcd( ...

  7. hdu 1695 GCD(欧拉函数+容斥)

    Problem Description Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD( ...

  8. HDU 1695 GCD(欧拉函数+容斥原理)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意:x位于区间[a, b],y位于区间[c, d],求满足GCD(x, y) = k的(x, ...

  9. GCD(欧拉函数)

    GCD Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submissio ...

随机推荐

  1. Aircrack使用

    Aircrack Aircrack-ng 组件功能之一就是采集WEP及WPA-PSK字典并应用无线端口扫描进行破解,具体组件说明如下: aircrack-ng 功能主要是WEP及WPA-PSK密码的恢 ...

  2. Adorner的收集

    Adorners Overview https://docs.microsoft.com/en-us/dotnet/framework/wpf/controls/adorners-overview ' ...

  3. linux 系统的ssh服务

    ssh服务由服务端软件Openssh和客户端(常见的有ssh,SecureCRT,putty,xshell)组成,ssh服务默认使用22端口提供服务,它有两个不兼容的ssh协议版本,分别是1.x和2. ...

  4. 初学reactNative遇到的问题总结

    1.undefined is not an object (evaluating '_react3.default.PropTypes.shape') Navigator已经不再react nativ ...

  5. PHP foreach引用&

    将以下代码打印 $variable = ['a', 'b', 'c']; foreach ($variable as $key => &$value) { } foreach ($var ...

  6. angular 双向绑定

    <input type="text" [(ngModel)]="name"> {{name}} import { Component, OnInit ...

  7. 「TJOI2015」线性代数

    题目链接 戳我 \(Describe\) 题目描述 为了提高智商,\(ZJY\)开始学习线性代数.她的小伙伴菠萝给她出了这样一个问题:给定一个\(n×n\)的矩阵\(B\)和一个\(1×n\)的矩阵\ ...

  8. 八、Node.js-http模块

    JS代码如下: /* 如果我们使用PHP来编写后端的代码时,需要Apache 或者 Nginx 的HTTP 服务器,并配上 mod_php5 模块和php-cgi,来处理客户端的请求相应. 不过对 N ...

  9. mysql 字符串的截取与连接

    mysql 字符串的截取   left() .right() .  substring()[ mid() .substr() 等价于substring() ] .substring_index() l ...

  10. Socket 简易静态服务器 WPF MVVM模式(二)

    command类 标准来说,command会有三种模式,委托命令 准备命令 附加命令 1.DelegateCommand 2.RelayCommand 3.AttachbehaviorCommand ...