【BZOJ2818】Gcd [莫比乌斯反演]
Gcd
Time Limit: 10 Sec Memory Limit: 256 MB
[Submit][Status][Discuss]
Description
给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的
数对(x,y)有多少对.
Input
一个整数N
Output
如题
Sample Input
Sample Output
HINT
1<=N<=10^7
Solution
直接莫比乌斯反演即可。

然后对于这个式子,我们下界分块一下即可。
Code
#include<iostream>
#include<string>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
using namespace std;
typedef long long s64; const int ONE = 1e7+; int T;
int n,m;
bool isp[ONE];
int prime[],p_num;
int miu[ONE],sum_miu[ONE];
s64 Ans; int get()
{
int res=,Q=; char c;
while( (c=getchar())< || c>)
if(c=='-')Q=-;
if(Q) res=c-;
while((c=getchar())>= && c<=)
res=res*+c-;
return res*Q;
} void Getmiu(int MaxN)
{
miu[] = ;
for(int i=; i<=MaxN; i++)
{
if(!isp[i])
isp[i] = , prime[++p_num] = i, miu[i] = -;
for(int j=; j<=p_num, i*prime[j]<=MaxN; j++)
{
isp[i * prime[j]] = ;
if(i % prime[j] == )
{
miu[i * prime[j]] = ;
break;
}
miu[i * prime[j]] = -miu[i];
}
miu[i] += miu[i-];
}
} int main()
{
n=get();
Getmiu(n);
for(int d=; d<=p_num; d++)
{
if(prime[d] > n) break;
int N = n/prime[d];
for(int i=,j=; i<=N; i=j+)
{
j = min(N, N/(N/i));
Ans += (s64)(N/i) * (N/i) * (miu[j] - miu[i-]);
}
} printf("%lld",Ans);
}
【BZOJ2818】Gcd [莫比乌斯反演]的更多相关文章
- BZOJ2818: Gcd 莫比乌斯反演
分析:筛素数,然后枚举,莫比乌斯反演,然后关键就是分块加速(分块加速在上一篇文章) #include<cstdio> #include<cstring> #include< ...
- [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)
[BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对. ...
- HDU1695 GCD(莫比乌斯反演)
传送门 看了1个多小时,终于懂了一点了 题目大意:给n,m,k.求gcd(x,y) = k(1<=x<=n, 1<=y<=m)的个数 思路:令F(i)表示i|gcd(x,y)的 ...
- hdu 1695 GCD 莫比乌斯反演入门
GCD 题意:输入5个数a,b,c,d,k;(a = c = 1, 0 < b,d,k <= 100000);问有多少对a <= p <= b, c <= q <= ...
- 洛谷P2257 YY的GCD 莫比乌斯反演
原题链接 差不多算自己推出来的第一道题QwQ 题目大意 \(T\)组询问,每次问你\(1\leqslant x\leqslant N\),\(1\leqslant y\leqslant M\)中有多少 ...
- HYSBZ - 2818 Gcd (莫比乌斯反演)
莫比乌斯反演的入门题,设 \(F(x): gcd(i,j)\%x=0\) 的对数,\(f(x): gcd(i,j)=x\)的对数. 易知\[F(p) = \lfloor \frac{n}{p} \rf ...
- Luogu P2257 YY的GCD 莫比乌斯反演
第一道莫比乌斯反演...$qwq$ 设$f(d)=\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)==d]$ $F(n)=\sum_{n|d}f(d)=\lfloor \frac{N ...
- BZOJ 2818 Gcd (莫比乌斯反演 或 欧拉函数)
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MB Submit: 2534 Solved: 1129 [Submit][Status][Discu ...
- BZOJ 2820 luogu 2257 yy的gcd (莫比乌斯反演)
题目大意:求$gcd(i,j)==k,i\in[1,n],j\in[1,m] ,k\in prime,n,m<=10^{7}$的有序数对个数,不超过10^{4}次询问 莫比乌斯反演入门题 为方便 ...
随机推荐
- Django信号的使用
https://www.cnblogs.com/renpingsheng/p/7566647.html
- css的水平居中和垂直居中总结
Html代码: <div class="md-warp"> <div class="md-main">块级元素</div> ...
- Django admin源码剖析
单例模式 单例模式(Singleton Pattern)是一种常用的软件设计模式,该模式的主要目的是确保某一个类只有一个实例存在.当你希望在整个系统中,某个类只能出现一个实例时,单例对象就能派上用场. ...
- selenide UI自动化进阶二 pageObject实现页面管理
首先定义登录页面,上代码吧 LoginPage.java package com.test.selenium.page; import org.openqa.selenium.By; import s ...
- 第六篇 常用请求协议之post put patch 总结
[转]https://blog.csdn.net/sshfl_csdn 感谢愿意总结分享的人,thanks idempotent 幂等的 如果一个方法重复执行多次,产生的效果是一样的,那就是i ...
- [HNOI2004]打鼹鼠
鼹鼠是一种很喜欢挖洞的动物,但每过一定的时间,它还是喜欢把头探出到地面上来透透气的.根据这个特点阿牛编写了一个打鼹鼠的游戏:在一个\(n*n\)的网格中,在某些时刻鼹鼠会在某一个网格探出头来透透气.你 ...
- 阿里云SLB上http强制跳转到https问题处理
背景: 最近一客户有一个需求,需要将外网所有http访问请求强制跳转到https,公网出口使用阿里云SLB,证书放在SLB上,SLB后端实例为ECS(webserver)web服务使用nginx, 网 ...
- iOS-Hello World
尝试练习一些简单的app,能快速上手开发环境和开发流程.基础Start Developing iOS Apps (Swift)https://developer.apple.com/library/c ...
- day-11 python自带库实现2层简单神经网络算法
深度神经网络算法,是基于神经网络算法的一种拓展,其层数更深,达到多层,本文以简单神经网络为例,利用梯度下降算法进行反向更新来训练神经网络权重和偏向参数,文章最后,基于Python 库实现了一个简单神经 ...
- php自学笔记2
php运行原理: 如果请求服务器上的资源是html网页,服务器直接将网页响应给客户端浏览器: 如果请求服务器上的资源是php,服务器先解释执行php,解释为标准的html代码响应给客户端浏览器.php ...