Loj 6433. 「PKUSC2018」最大前缀和 (状压dp)
题面
题解
感觉挺难的啊~
状压\(dp\)
首先,有一个性质
对于一个序列的最大前缀和\(\sum_{i=1}^{p} A[i]\)
显然对于每个\(\sum_{i=p+1}^{x}A[i](p+1 \leq x \leq n)<0\)
我们可以以\(p\)分成两个集合
\(n\leq 20\),所以状压一下
\(sum[i]\)表示当前状态表示的和
\(f[i]\)表示用当前状态的数,组成最大前缀和为\(sum[i]\)的方案数
\(g[i]\)表示当前状态的数,组成的序列,每个前缀和都\(<=0\)
怎么转移呢?
考虑\(g\)的转移:
如果\(sum[S|(1<<i)] <= 0\)
那么\(g[s|(1<<i)] += g[S]\)
显然把\(A[i]\)放在序列末尾,也满足条件。。
考虑\(f\)的转移:
如果\(sum[S] > 0\)
那么\(sum[S] += sum[S-(1<<j)](j \in S)\)
把\(A[i]\)放在序列首,满足条件
然后 \(ans = f[S] * g[S'] * sum[S]\)
Code
#include<bits/stdc++.h>
#define LL long long
#define RG register
using namespace std;
template<class T> inline void read(T &x) {
x = 0; RG char c = getchar(); bool f = 0;
while (c != '-' && (c < '0' || c > '9')) c = getchar(); if (c == '-') c = getchar(), f = 1;
while (c >= '0' && c <= '9') x = x*10+c-48, c = getchar();
x = f ? -x : x;
return ;
}
template<class T> inline void write(T x) {
if (!x) {putchar(48);return ;}
if (x < 0) x = -x, putchar('-');
int len = -1, z[20]; while (x > 0) z[++len] = x%10, x /= 10;
for (RG int i = len; i >= 0; i--) putchar(z[i]+48);return ;
}
const int N = 21, Mod = 998244353;
int a[N], f[1<<N], g[1<<N], num[1<<N], sum[1<<N];
#define lowbit(x) (x&(-x))
template<class T> inline void Add(T &x, T y) {x += y; if (x >= Mod) x -= Mod;}
int main() {
int n;
read(n);
int limit = 1<<n;
for (int i = 0; i < n; i++) read(a[i]), num[1<<i] = a[i];
for (int i = 0; i < limit; i++)
sum[i] = (sum[i^lowbit(i)] + num[lowbit(i)]) % Mod;
g[0] = 1;
for (int S = 0; S < limit; S++)
if (sum[S] <= 0)
for (int i = 0; i < n; i++)
if ((S >> i) & 1)
Add(g[S], g[S^(1<<i)]);
LL ans = 0;
for (int i = 0; i < n; i++)
f[1<<i] = 1;
for (int S = 0; S < limit; S++) {
if (sum[S] > 0)
for (int i = 0; i < n; i++)
if (!((S >> i) & 1))
Add(f[S|(1<<i)], f[S]);
Add(ans, 1ll * f[S] * g[(limit-1)^S] % Mod * (sum[S]+Mod) % Mod);
}
printf("%lld\n", ans);
return 0;
}
Loj 6433. 「PKUSC2018」最大前缀和 (状压dp)的更多相关文章
- LOJ 6433 「PKUSC2018」最大前缀和——状压DP
题目:https://loj.ac/problem/6433 想到一个方案中没有被选的后缀满足 “该后缀的任一前缀和 <=0 ”. 于是令 dp[ S ] 表示选了点集 S ,满足任一前缀和 & ...
- LOJ#6433. 「PKUSC2018」最大前缀和 状压dp
原文链接https://www.cnblogs.com/zhouzhendong/p/LOJ6433.html 题解 枚举一个集合 S ,表示最大前缀和中包含的元素集为 S ,然后求出有多少个排列是这 ...
- loj 6433 「PKUSC2018」最大前缀和 题解【DP】【枚举】【二进制】【排列组合】
这是个什么集合DP啊- 想过枚举断点但是不会处理接下来的问题了- 我好菜啊 题目描述 小 C 是一个算法竞赛爱好者,有一天小 C 遇到了一个非常难的问题:求一个序列的最大子段和. 但是小 C 并不会做 ...
- Loj#6433「PKUSC2018」最大前缀和(状态压缩DP)
题面 Loj 题解 先转化题意,其实这题在乘了\(n!\)以后就变成了全排列中的最大前缀和的和(有点拗口).\(n\leq20\),考虑状压\(DP\) 考虑一个最大前缀和\(\sum\limits_ ...
- loj#6433. 「PKUSC2018」最大前缀和(状压dp)
传送门 今天\(PKUWC\)试机的题 看着边上的大佬们一个个\(A\)穿咱还是不会-- 我们考虑枚举最大前缀和,如果一个前缀\(1\)到\(p\)是最大前缀和,那么\(p\)后面的所有前缀和都要小于 ...
- [LOJ #6433]「PKUSC2018」最大前缀和
题目大意:给你一个$n(n\leqslant20)$项的数列$A$,设重排后的数列为$A'$,令$pre_p=\sum\limits_{i=1}^pA'_i$,求$max\{pre_i\}$的期望,乘 ...
- 【LOJ】#6433. 「PKUSC2018」最大前缀和
题解 神仙的状压啊QAQ 设一个\(f[S]\)表示数字的集合为\(S\)时\(sum[S]\)为前缀最大值的方案数 \(g[S]\)表示数字集合为\(S\)时所有前缀和都小于等于0的方案数 答案就是 ...
- loj2540 「PKUWC2018」随机算法 【状压dp】
题目链接 loj2540 题解 有一个朴素三进制状压\(dp\),考虑当前点三种状态:没考虑过,被选入集合,被排除 就有了\(O(n3^{n})\)的转移 但这样不优,我们考虑优化状态 设\(f[i] ...
- BZOJ1688 「USACO05OPEN」Disease Manangement 背包+状压DP
问题描述 BZOJ1688 题解 背包,在转移过程中使用状压. \(\mathrm{Code}\) #include<bits/stdc++.h> using namespace std; ...
随机推荐
- mysql视图总结
http://www.2cto.com/database/201508/427083.html 一. 视图概述 视图是一个虚拟表,其内容由查询定义.同真实的表一样,视图包含一系列带有名称的列和行数据. ...
- c++ 组合模式(composite)
原文地址:http://www.cnblogs.com/jiese/p/3168844.html 当你发现需求中是体现部分与整体层次的结构时,以及你希望用户可以忽略组合对象与单个对象的不同,统一地使用 ...
- 50. Pow(x, n) 幂次方
[抄题]: mplement pow(x, n), which calculates x raised to the power n (xn). Example 1: Input: 2.00000, ...
- Spring 实例化bean的三种方式
第一种方法:直接配置Bean <bena id="所需要实例化的一个实例名称" class="包名.类名"/> 例如: 配置文件中的bean.XML ...
- ROS源码解读(一)--局部路径规划
博客转载自:https://blog.csdn.net/xmy306538517/article/details/78772066 ROS局部路径导航包括Trajectory Rollout 和 Dy ...
- Use SFTP in Linux (转)
From http://www.cnblogs.com/chen1987lei/archive/2010/11/26/1888391.html sftp 是一个交互式文件传输程式.它类似于 ftp, ...
- C语言实践 输出100以内的素数
int main() { int isprime = 1; for (int i = 2; i < 101; i++) { isprime = 1;//要确保每次循环都要把这个值设置为1,不然上 ...
- matplotlib的颜色和控制条
为了方便记忆,收藏备用 一 linestyle '-' solid line style '--' dashed line style '-.' dash-dot line style ':' dot ...
- 453D Little Pony and Elements of Harmony
传送门 分析 我们可以将所有的b[i^j]直接对应到b[f(i^j)]上 于是显然可以fwt 我们对b进行t次fwt之后直接将答案与e0卷起来即可 注意由于模数不确定,我们可以将模数扩大$2^m$然后 ...
- osm2pgsql导入少字段
Explanation: osm2pgsql imports normally the data in a static database schema. The tags without a cor ...