参考:

1. linux常见进程与内核线程

2. Linux下2号进程的kthreadd--Linux进程的管理与调度(七)

本文中代码内核版本:3.2.0

kthreadd:这种内核线程只有一个,它的作用是管理调度其它的内核线程。这个线程不能关闭。它在内核初始化的时候被创建,会循环运行一个叫做kthreadd的函数,该函数的作用是运行kthread_create_list全局链表中维护的kthread。其他任务或代码想创建内核线程时需要调用kthread_create(或kthread_create_on_node)创建一个kthread,该kthread会被加入到kthread_create_list链表中,同时kthread_create会weak up kthreadd_task(即kthreadd)(增链表)。kthreadd再执行kthread时会调用老的接口——kernel_thread运行一个名叫“kthread”的内核线程去运行创建的kthread,被执行过的kthread会从kthread_create_list链表中删除(减链表),并且kthreadd会不断调用scheduler 让出CPU。kthreadd创建的kthread执行完后,会调到kthread_create()执行,之后再执行最初原任务或代码。

创建

在linux启动的C阶段start_kernel()的最后,rest_init()会开启两个进程:kernel_init,kthreadd,之后主线程变成idle线程,init/main.c。

linux下的3个特殊的进程:idle进程(PID=0),init进程(PID=1)和kthreadd(PID=2)。

* idle进程由系统自动创建, 运行在内核态   PID=0
idle进程其pid=0,其前身是系统创建的第一个进程,也是唯一一个没有通过fork或者kernel_thread产生的进程。完成加载系统后,演变为进程调度、交换。

* init进程由idle通过kernel_thread创建,在内核空间完成初始化后, 加载init程序, 并最终用户空间运行  PID=1 PPID=0
由0进程创建,完成系统的初始化. 是系统中所有其它用户进程的祖先进程 。
Linux中的所有进程都是有init进程创建并运行的。首先Linux内核启动,然后在用户空间中启动init进程,再启动其他系统进程。在系统启动完成完成后,init将变为守护进程监视系统其他进程。

* kthreadd进程由idle通过kernel_thread创建,并始终运行在内核空间, 负责所有内核线程的调度和管理 PID=2 PPID=0
它的任务就是管理和调度其他内核线程kernel_thread, 会循环执行一个kthreadd的函数,该函数的作用就是运行kthread_create_list全局链表中维护的kthread, 当我们调用kthread_create创建的内核线程会被加入到此链表中,因此所有的内核线程都是直接或者间接的以kthreadd为父进程。所有的内核线程的PPID都是2。

注:所有的内核线程在大部分时间里都处于阻塞状态(TASK_INTERRUPTIBLE)只有在系统满足进程需要的某种资源的情况下才会运行。

/*

* We need to finalize in a non-__init function, or else race conditions
* between the root thread and the init thread may cause start_kernel to
* be reaped by free_initmem before the root thread has proceeded to
* cpu_idle.
*
* gcc-3.4 accidentally inlines this function, so use noinline.
*/

static __initdata DECLARE_COMPLETION(kthreadd_done);

static noinline void __init_refok rest_init(void)
{
int pid; rcu_scheduler_starting();
/*
* We need to spawn init first so that it obtains pid 1, however
* the init task will end up wanting to create kthreads, which, if
* we schedule it before we create kthreadd, will OOPS.
*/
kernel_thread(kernel_init, NULL, CLONE_FS | CLONE_SIGHAND);
numa_default_policy();
pid = kernel_thread(kthreadd, NULL, CLONE_FS | CLONE_FILES);
rcu_read_lock();
kthreadd_task = find_task_by_pid_ns(pid, &init_pid_ns);
rcu_read_unlock();
complete(&kthreadd_done); /*
* The boot idle thread must execute schedule()
* at least once to get things moving:
*/
init_idle_bootup_task(current);
preempt_enable_no_resched();
schedule(); /* Call into cpu_idle with preempt disabled */
preempt_disable();
cpu_idle();
}

kthreadd任务

函数体定义在kernel/kthread.c中。

static DEFINE_SPINLOCK(kthread_create_lock);
static LIST_HEAD(kthread_create_list);
struct task_struct *kthreadd_task;
struct kthread_create_info
{
/* Information passed to kthread() from kthreadd. */
int (*threadfn)(void *data);
void *data;
int node; /* Result passed back to kthread_create() from kthreadd. */
struct task_struct *result;
struct completion done; struct list_head list;
}; struct kthread {
int should_stop;
void *data;
struct completion exited;
};
int kthreadd(void *unused)
{
struct task_struct *tsk = current; /* Setup a clean context for our children to inherit. */
set_task_comm(tsk, "kthreadd");
ignore_signals(tsk);
set_cpus_allowed_ptr(tsk, cpu_all_mask);
set_mems_allowed(node_states[N_HIGH_MEMORY]); current->flags |= PF_NOFREEZE | PF_FREEZER_NOSIG; for (;;) {
set_current_state(TASK_INTERRUPTIBLE);
if (list_empty(&kthread_create_list))
schedule();
__set_current_state(TASK_RUNNING); spin_lock(&kthread_create_lock);
while (!list_empty(&kthread_create_list)) {
struct kthread_create_info *create; create = list_entry(kthread_create_list.next,
struct kthread_create_info, list);
list_del_init(&create->list);
spin_unlock(&kthread_create_lock); create_kthread(create); spin_lock(&kthread_create_lock);
}
spin_unlock(&kthread_create_lock);
} return ;
}
static void create_kthread(struct kthread_create_info *create)
{
int pid; #ifdef CONFIG_NUMA
current->pref_node_fork = create->node;
#endif
/* We want our own signal handler (we take no signals by default). */
pid = kernel_thread(kthread, create, CLONE_FS | CLONE_FILES | SIGCHLD);
if (pid < ) {
create->result = ERR_PTR(pid);
complete(&create->done);
}
}

kthread任务

static int kthread(void *_create)
{
/* Copy data: it's on kthread's stack */
struct kthread_create_info *create = _create;
int (*threadfn)(void *data) = create->threadfn;
void *data = create->data;
struct kthread self;
int ret; self.should_stop = ;
self.data = data;
init_completion(&self.exited);
current->vfork_done = &self.exited; /* OK, tell user we're spawned, wait for stop or wakeup */
__set_current_state(TASK_UNINTERRUPTIBLE);
create->result = current;
complete(&create->done);
schedule(); ret = -EINTR;
if (!self.should_stop)
ret = threadfn(data); /* we can't just return, we must preserve "self" on stack */
do_exit(ret);
}
/**
* kthread_create_on_node - create a kthread.
* @threadfn: the function to run until signal_pending(current).
* @data: data ptr for @threadfn.
* @node: memory node number.
* @namefmt: printf-style name for the thread.
*
* Description: This helper function creates and names a kernel
* thread. The thread will be stopped: use wake_up_process() to start
* it. See also kthread_run().
*
* If thread is going to be bound on a particular cpu, give its node
* in @node, to get NUMA affinity for kthread stack, or else give -1.
* When woken, the thread will run @threadfn() with @data as its
* argument. @threadfn() can either call do_exit() directly if it is a
* standalone thread for which no one will call kthread_stop(), or
* return when 'kthread_should_stop()' is true (which means
* kthread_stop() has been called). The return value should be zero
* or a negative error number; it will be passed to kthread_stop().
*
* Returns a task_struct or ERR_PTR(-ENOMEM).
*/
struct task_struct *kthread_create_on_node(int (*threadfn)(void *data),
void *data,
int node,
const char namefmt[],
...)
{
struct kthread_create_info create; create.threadfn = threadfn;
create.data = data;
create.node = node;
init_completion(&create.done); spin_lock(&kthread_create_lock);
list_add_tail(&create.list, &kthread_create_list);
spin_unlock(&kthread_create_lock); wake_up_process(kthreadd_task);
wait_for_completion(&create.done); if (!IS_ERR(create.result)) {
static const struct sched_param param = { .sched_priority = };
va_list args;
va_start(args, namefmt);
vsnprintf(create.result->comm, sizeof(create.result->comm),
namefmt, args);
va_end(args);
/*
* root may have changed our (kthreadd's) priority or CPU mask.
* The kernel thread should not inherit these properties.
*/
sched_setscheduler_nocheck(create.result, SCHED_NORMAL, &param);
set_cpus_allowed_ptr(create.result, cpu_all_mask);
}
return create.result;
}
EXPORT_SYMBOL(kthread_create_on_node);

kernel/kthread.c的头文件include/linux/kthread.h定义kthread_create():

#define kthread_create(threadfn, data, namefmt, arg...) \
kthread_create_on_node(threadfn, data, -1, namefmt, ##arg)

kthreadd-linux下2号进程的更多相关文章

  1. linux下1号进程的前世(kthread_init)今生(init)

    参考: 1.  Linux下1号进程的前世(kernel_init)今生(init进程)----Linux进程的管理与调度(六) 2. linux挂载根文件系统过程 3. BusyBox init工作 ...

  2. Linux下0号进程的前世(init_task进程)今生(idle进程)----Linux进程的管理与调度(五)【转】

    前言 Linux下有3个特殊的进程,idle进程(PID = 0), init进程(PID = 1)和kthreadd(PID = 2) idle进程由系统自动创建, 运行在内核态 idle进程其pi ...

  3. Linux下1号进程的前世(kernel_init)今生(init进程)----Linux进程的管理与调度(六)

    前面我们了解到了0号进程是系统所有进程的先祖, 它的进程描述符init_task是内核静态创建的, 而它在进行初始化的时候, 通过kernel_thread的方式创建了两个内核线程,分别是kernel ...

  4. Linux下2号进程的kthreadd--Linux进程的管理与调度(七)

    2号进程 内核初始化rest_init函数中,由进程 0 (swapper 进程)创建了两个process init 进程 (pid = 1, ppid = 0) kthreadd (pid = 2, ...

  5. linux的0号进程和1号进程

    linux的 0号进程 和 1 号进程 Linux下有3个特殊的进程,idle进程(PID = 0), init进程(PID = 1)和kthreadd(PID = 2) * idle进程由系统自动创 ...

  6. windows和linux下关闭Tomcat进程

    windows和linux下解决Tomcat进程 windows下启动Tomcat报错,8080端口号被占用,报错信息如下 两种解决方法,一种是关闭了这个端口号,另外一种是修改Tomcat下的serv ...

  7. windows和linux下杀死Tomcat进程,解决端口占用

    windows和linux下解决Tomcat进程 windows下启动Tomcat报错,8080端口号被占用,报错信息如下 两种解决方法,一种是关闭了这个端口号,另外一种是修改Tomcat下的serv ...

  8. linux下查看当前进程以及杀死进程

    ###linux下查看当前进程以及杀死进程 查看进程 ps命令查找与进程相关的PID号: ps a :显示现行终端机下的所有程序,包括其他用户的程序. ps -A :显示所有程序. ps c :列出程 ...

  9. Linux下查看某个进程打开的文件数-losf工具常用参数介绍

    Linux下查看某个进程打开的文件数-losf工具常用参数介绍 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 在linux操作系统中,一切皆文件.通过文件不仅仅可以访问常规数据,还 ...

随机推荐

  1. 让旧的的Mac也能免费安装keynote

    苹果在美国时间9月10日上午10时,将免费iworks.  听到此消息,我心情激动. 立马升级了操作系统 . 然后搜索keynote ,发现还是收费的.  非常郁闷.. 上网上了解,有如下说明: 20 ...

  2. [Git] git merge和rebase的区别

    git merge 会生成一个新得合并节点,而rebase不会 比如: D---E test / A---B---C---F master 使用merge合并, 为分支合并自动识别出最佳的同源合并点: ...

  3. python - ImportError: No module named pywintypes

    must restart the python shell to avoid this issue after pywin32 installed

  4. Zabbix的SNMPTrap监控配置

    SNMPTrap监控主要用于设备发生故障时的主动通知的监控.以下简单记录下Zabbix的SNMPTrap的配置方法. 一.SNMPTrap监控的处理流程说明 1.监控对象发送SNMPTrap信息到sn ...

  5. 使用iozone测试磁盘性能(测试文件读写)

    IOzone是一个文件系统测试基准工具.可以测试不同的操作系统中文件系统的读写性能.可以通过 write, re-write, read, re-read, random read, random w ...

  6. ./test.sh . ./test.sh source ./test.sh的区别

    背景 今天写几个shell脚本,使用一个公共的config.sh,但是export出来的东西在另外的*.sh中不能直接用,这让我很惆怅,印象中就是可以export出来给别的shell用啊,只要不是下一 ...

  7. 作为Java程序员应该掌握的10项技能

    本文详细罗列了作为Java程序员应该掌握的10项技能.分享给大家供大家参考.具体如下: 1.语法:必须比较熟悉,在写代码的时候IDE的编辑器对某一行报错应该能够根据报错信息知道是什么样的语法错误并且知 ...

  8. 倍福TwinCAT(贝福Beckhoff)常见问题(FAQ)-如何配置虚拟轴 TC2

    右击NC- Configuration,然后Append Task,然后右击Axis,Append Axis   轴的类型可以分为:Continuous Axis,默认的类型,NC可以连续闭环控制该轴 ...

  9. annex-b格式

    annex-b格式 总的来说H264的码流的打包方式有两种,一种为annex-b byte stream format的格式,这个是绝大部分编码器的默认输出格式,就是每个帧的开头的3~4个字节是H26 ...

  10. 小米6安装google play

    http://bbs.xiaomi.cn/t-13579116 http://m.mk52.cn/jiaocheng/3288.html 步骤: 1.下载需要的文件并解压 (http://techta ...