原题链接在这里:https://leetcode.com/problems/target-sum/description/

题目:

You are given a list of non-negative integers, a1, a2, ..., an, and a target, S. Now you have 2 symbols + and -. For each integer, you should choose one from + and - as its new symbol.

Find out how many ways to assign symbols to make sum of integers equal to target S.

Example 1:

Input: nums is [1, 1, 1, 1, 1], S is 3.
Output: 5
Explanation: -1+1+1+1+1 = 3
+1-1+1+1+1 = 3
+1+1-1+1+1 = 3
+1+1+1-1+1 = 3
+1+1+1+1-1 = 3 There are 5 ways to assign symbols to make the sum of nums be target 3.

Note:

  1. The length of the given array is positive and will not exceed 20.
  2. The sum of elements in the given array will not exceed 1000.
  3. Your output answer is guaranteed to be fitted in a 32-bit integer.

题解:

List some examples. e.g. 1,1,1,1,1.

If all of them are positive, it is 5, all negitative, it is -5. Beyond [-5,5], it can't happen, thus, the ways count is 0.

For this sum question, let dp[i] denotes the sum up to i, the count of ways.

Iterate each num in nums. For num, it could be + or -. say first 1. Then it could -1 or 1.

The ways to -1 is 1, ways to 1 is 1. It is because dp[0] accumlate to dp[1] and dp[-1].

递推时, 上个可能结果或加或减当前num得到新的结果, 不同ways的数目在新结果下累计.  只有对应count大于0时才可能是上个可能结果, because it would not be out of index.

起始值dp[0 + sum] = 1. 可能结果为0的不同ways数目是1. sum is offset. dp[0] means sum up to -sum.

Time Complexity: O(sum * n). sum是nums所有num的和. n = nums.length

Space: O(sum).

AC Java:

 class Solution {
public int findTargetSumWays(int[] nums, int S) {
if(nums == null || nums.length == 0){
return 0;
} int sum = 0;
for(int num : nums){
sum += num;
} if(sum < S || -sum > S){
return 0;
} int [] dp = new int[2*sum+1];
//sum相当于 offset
dp[0+sum] = 1;
for(int num : nums){
int [] next = new int[2*sum+1];
for(int k = 0; k<2*sum+1; k++){
if(dp[k] > 0){
next[k+num] += dp[k];
next[k-num] += dp[k];
}
}
dp = next;
}
return dp[sum + S];
}
}

Method 2:

nums中一部分用的+号 相当于positive, 另一部分用的 - 号相当于negative. 分成两组.

sum(p) - sum(n) = target.

sum(p) + sum(n) + sum(p)-sum(n) = target + sum(p) + sum(n)

2*sum(p) = target + sum(nums)

相当于在nums中找有多少种subarray, subarray自身的和是(target + sum(nums))/2的问题.

subSum求解这个转化问题.

存储到当前数字得到所有结果ways数目. 为什么循环中i要从大到小呢. 这其实是dp的space compression.

update新的dp时会用到上一轮前面的值,所以要从后往前更新. 这样更新时保证用到的都是上轮的值.

Time Complexity: O(sum*nums.length). sum是nums所有num的和.

Space: O(sum).

AC Java:

class Solution {
public int findTargetSumWays(int[] nums, int S) {
int sum = 0;
for(int num : nums){
sum += num;
} if(S < -sum || S > sum || (S+sum)%2 != 0){
return 0;
} return subSum(nums, (S+sum)/2);
} private int subSum(int [] nums, int target){
int [] dp = new int[target+1];
dp[0] = 1;
for(int num : nums){
for(int i = target; i>=num; i--){
dp[i] += dp[i-num];
}
} return dp[target];
}
}

类似Partition Equal Subset Sum.

LeetCode Target Sum的更多相关文章

  1. [LeetCode] Target Sum 目标和

    You are given a list of non-negative integers, a1, a2, ..., an, and a target, S. Now you have 2 symb ...

  2. Leetcode——Target Sum

    Question You are given a list of non-negative integers, a1, a2, ..., an, and a target, S. Now you ha ...

  3. Leetcode之深度优先搜索(DFS)专题-494. 目标和(Target Sum)

    Leetcode之深度优先搜索(DFS)专题-494. 目标和(Target Sum) 深度优先搜索的解题详细介绍,点击 给定一个非负整数数组,a1, a2, ..., an, 和一个目标数,S.现在 ...

  4. [Leetcode] DP -- Target Sum

    You are given a list of non-negative integers, a1, a2, ..., an, and a target, S. Now you have 2 symb ...

  5. LN : leetcode 494 Target Sum

    lc 494 Target Sum 494 Target Sum You are given a list of non-negative integers, a1, a2, ..., an, and ...

  6. Longest subarray of target sum

    2018-07-08 13:24:31 一.525. Contiguous Array 问题描述: 问题求解: 我们都知道对于subarray的问题,暴力求解的时间复杂度为O(n ^ 2),问题规模已 ...

  7. LeetCode:Path Sum I II

    LeetCode:Path Sum Given a binary tree and a sum, determine if the tree has a root-to-leaf path such ...

  8. [leetcode] Combination Sum and Combination SumII

    Given a set of candidate numbers (C) and a target number (T), find all unique combinations in C wher ...

  9. 剑指offer 65. 不用加减乘除做加法(Leetcode 371. Sum of Two Integers)

    剑指offer 65. 不用加减乘除做加法(Leetcode 371. Sum of Two Integers) https://leetcode.com/problems/sum-of-two-in ...

随机推荐

  1. Kattis - abc 【水】

    题意 给出三个数,然后给出一个顺序,有ABC三个字母构成, A是最大的数字 B是中间的数字 C是最小的数字 根据 ABC的顺序 给出 数字的顺序 思路 先排序一下,然后用 MAP 双向标记一下 AC代 ...

  2. iOS 单例模式 学习 "52个方法 第6章 45条 使用 dispath_once 来执行只需运行一次的线程安全代码"

    百度定义:单例模式是一种常用的软件设计模式.在它的核心结构中只包含一个被称为单例的特殊类.通过单例模式可以保证系统中一个类只有一个实例. 维基百科:在软件工程中,单例是一种用于实现单例的数学概念,即将 ...

  3. Eclipse运行错误:Failed to load the JNI shared library的解决办法

    出现上述错误的原因是环境变量配置出问题,查看JAVA_HOME这一环境变量的值是否正确. 操作步骤如下, 1.右键“我的电脑”->属性 ↓ 2.打开“高级系统设置”,如下图: ↓ 3.选择“环境 ...

  4. java 图片转换工具

    package com.sicdt.sicsign.web.utils; import java.awt.Graphics2D; import java.awt.image.BufferedImage ...

  5. Wi-Fi基带芯片和Wi-Fi无线网卡设计方案

    转:http://wenku.baidu.com/link?url=Q0ImC 0IIG7qrbB8DpGrrU3aOYvxNYCyHsxukspH8XMCDYMjYMPSJq_TCISC5amsNY ...

  6. Sublime Text3 打开文档乱码

    一.安装包管理器使用Ctrl+~快捷键或者通过View->Show Console菜单打开命令行,粘贴如下代码 import urllib.request,os; pf = 'Package C ...

  7. MVC6 (ASP.NET5) 自定义TagHelper

    1) 在 _ViewImports.cshtml 中引入TagHelper类所在的 Assembly . (注意不是namespace)  : @addTagHelper "*, WebAp ...

  8. jupyter && ipython notebook简介

    2017-08-19 最近用了一下 ipython notebook 也就是 jupyter,这里有一个介绍还不错: http://www.cnblogs.com/howiewang/p/jupyte ...

  9. mysql服务性能优化 my.cnf my.ini配置说明详解(16G内存)

    sort_buffer_size,join_buffer_size,read_buffer_size参数对应的分配内存也是每个连接独享 这配置已经优化的不错了,如果你的mysql没有什么特殊情况的话, ...

  10. PHP(Zend Studio)入门视频

    视频地址: http://www.ev-get.com/article/2014/5/9/20962.html (去掉地址中的减号-:可以看视频) Zend Studio教学视频之Zend Studi ...