原题链接在这里:https://leetcode.com/problems/target-sum/description/

题目:

You are given a list of non-negative integers, a1, a2, ..., an, and a target, S. Now you have 2 symbols + and -. For each integer, you should choose one from + and - as its new symbol.

Find out how many ways to assign symbols to make sum of integers equal to target S.

Example 1:

Input: nums is [1, 1, 1, 1, 1], S is 3.
Output: 5
Explanation: -1+1+1+1+1 = 3
+1-1+1+1+1 = 3
+1+1-1+1+1 = 3
+1+1+1-1+1 = 3
+1+1+1+1-1 = 3 There are 5 ways to assign symbols to make the sum of nums be target 3.

Note:

  1. The length of the given array is positive and will not exceed 20.
  2. The sum of elements in the given array will not exceed 1000.
  3. Your output answer is guaranteed to be fitted in a 32-bit integer.

题解:

List some examples. e.g. 1,1,1,1,1.

If all of them are positive, it is 5, all negitative, it is -5. Beyond [-5,5], it can't happen, thus, the ways count is 0.

For this sum question, let dp[i] denotes the sum up to i, the count of ways.

Iterate each num in nums. For num, it could be + or -. say first 1. Then it could -1 or 1.

The ways to -1 is 1, ways to 1 is 1. It is because dp[0] accumlate to dp[1] and dp[-1].

递推时, 上个可能结果或加或减当前num得到新的结果, 不同ways的数目在新结果下累计.  只有对应count大于0时才可能是上个可能结果, because it would not be out of index.

起始值dp[0 + sum] = 1. 可能结果为0的不同ways数目是1. sum is offset. dp[0] means sum up to -sum.

Time Complexity: O(sum * n). sum是nums所有num的和. n = nums.length

Space: O(sum).

AC Java:

 class Solution {
public int findTargetSumWays(int[] nums, int S) {
if(nums == null || nums.length == 0){
return 0;
} int sum = 0;
for(int num : nums){
sum += num;
} if(sum < S || -sum > S){
return 0;
} int [] dp = new int[2*sum+1];
//sum相当于 offset
dp[0+sum] = 1;
for(int num : nums){
int [] next = new int[2*sum+1];
for(int k = 0; k<2*sum+1; k++){
if(dp[k] > 0){
next[k+num] += dp[k];
next[k-num] += dp[k];
}
}
dp = next;
}
return dp[sum + S];
}
}

Method 2:

nums中一部分用的+号 相当于positive, 另一部分用的 - 号相当于negative. 分成两组.

sum(p) - sum(n) = target.

sum(p) + sum(n) + sum(p)-sum(n) = target + sum(p) + sum(n)

2*sum(p) = target + sum(nums)

相当于在nums中找有多少种subarray, subarray自身的和是(target + sum(nums))/2的问题.

subSum求解这个转化问题.

存储到当前数字得到所有结果ways数目. 为什么循环中i要从大到小呢. 这其实是dp的space compression.

update新的dp时会用到上一轮前面的值,所以要从后往前更新. 这样更新时保证用到的都是上轮的值.

Time Complexity: O(sum*nums.length). sum是nums所有num的和.

Space: O(sum).

AC Java:

class Solution {
public int findTargetSumWays(int[] nums, int S) {
int sum = 0;
for(int num : nums){
sum += num;
} if(S < -sum || S > sum || (S+sum)%2 != 0){
return 0;
} return subSum(nums, (S+sum)/2);
} private int subSum(int [] nums, int target){
int [] dp = new int[target+1];
dp[0] = 1;
for(int num : nums){
for(int i = target; i>=num; i--){
dp[i] += dp[i-num];
}
} return dp[target];
}
}

类似Partition Equal Subset Sum.

LeetCode Target Sum的更多相关文章

  1. [LeetCode] Target Sum 目标和

    You are given a list of non-negative integers, a1, a2, ..., an, and a target, S. Now you have 2 symb ...

  2. Leetcode——Target Sum

    Question You are given a list of non-negative integers, a1, a2, ..., an, and a target, S. Now you ha ...

  3. Leetcode之深度优先搜索(DFS)专题-494. 目标和(Target Sum)

    Leetcode之深度优先搜索(DFS)专题-494. 目标和(Target Sum) 深度优先搜索的解题详细介绍,点击 给定一个非负整数数组,a1, a2, ..., an, 和一个目标数,S.现在 ...

  4. [Leetcode] DP -- Target Sum

    You are given a list of non-negative integers, a1, a2, ..., an, and a target, S. Now you have 2 symb ...

  5. LN : leetcode 494 Target Sum

    lc 494 Target Sum 494 Target Sum You are given a list of non-negative integers, a1, a2, ..., an, and ...

  6. Longest subarray of target sum

    2018-07-08 13:24:31 一.525. Contiguous Array 问题描述: 问题求解: 我们都知道对于subarray的问题,暴力求解的时间复杂度为O(n ^ 2),问题规模已 ...

  7. LeetCode:Path Sum I II

    LeetCode:Path Sum Given a binary tree and a sum, determine if the tree has a root-to-leaf path such ...

  8. [leetcode] Combination Sum and Combination SumII

    Given a set of candidate numbers (C) and a target number (T), find all unique combinations in C wher ...

  9. 剑指offer 65. 不用加减乘除做加法(Leetcode 371. Sum of Two Integers)

    剑指offer 65. 不用加减乘除做加法(Leetcode 371. Sum of Two Integers) https://leetcode.com/problems/sum-of-two-in ...

随机推荐

  1. QtGstreamer 编译

    一  安装依赖项 1 安装cmake hdhuang@hdh-UBT:~/gstreamer/qt-gstreamer-0.10.2/build$ sudo apt-get install cmake ...

  2. Ubuntu 12.04下boost库的交叉编译

    oost Ver: 1.55.0Compiler : GNU gcc 4.6 for ARM 1. 确保ARM编译成功安装,并配置好环境变量.2. 解压boost压缩包 3. 进入目录执行./boot ...

  3. P3413 SAC#1 - 萌数

    题目 洛谷 数位动规用爆搜真好玩 做法 含有回文串实际我们仅需判断是否有\(2/3\)回文串 \(Dfs(now,num,pre,ly,lead,prel,top)\): 在第\(now\)位 \(n ...

  4. MongoDB的Find详解(一)

    1.指定返回的键 db.[documentName].find ({条件},{键指定}) 数据准备persons.json var persons = [{name:"jim",a ...

  5. 2020年将热门的8大IT职业领域

    近日,外媒梳理了未来5年内,也是就是2020年仍将受到热捧的八大科技领域,为IT从业者如何做好长远规划.有针对性地培养自身技能.又不偏离热门岗位提供了参考.(图片来自网易) 2020年将热门的8大IT ...

  6. mysqldump 的常用操作

    以下是 mysqldump 的一些使用参数 备份数据库#mysqldump 数据库名 >数据库备份名 #mysqldump -A -u用户名 -p密码 数据库名>数据库备份名 #mysql ...

  7. nginx 安装配置+清缓存模块安装

    经过一段时间的使用,发现 nginx 在并发与负载能力方面确实优于 apache,现在已经将大部分站点从 apache 转到了 nginx 了.以下是 nginx 的一些简单的安装配置.环境操作系统: ...

  8. ANT+JMETER集成1(生成报告)

    配置build.xml文件时,网上找了各种版本的代码都会报错, 终于找到个可以生成报告的build源码了 链接: http://www.cnblogs.com/hanxiaomin/p/6731810 ...

  9. maven环境变量配置不成功的原因

    在配置java开发环境时,MAVEN_HOME配置后,再将%MAVEN_HOME%\bin加入path后,mvn -v 不成功,显示mvn不是内部命令 网上寻觅各种办法无果 于是弃用MAVEN_HOM ...

  10. 红米1S.线刷

    ZC:遇到问题:“Missmatching image and device”,解决网址:“[2.23][史上最全]MiFlash线刷错误的那些事儿_收藏备用_小米手机4_MIUI论坛.html”(h ...