【[TJOI2017]城市】
好像\(noip\)之前做某雅礼的题的时候看到过这道题的数据范围增强版
当时那道题数据范围是\(3e5\)感觉神仙的一批
这道题数据范围\(5e3\)那岂不是可以\(O(n^2)\)水过
有一点非常显然就是我们断开的那条边肯定是树的直径上的一条边,于是我们可以先来两遍树形\(dp\)求出子树内最长链,次长链,和子树外最长链
这个时候树的直径就知道啦
我们枚举断边,当然只断直径上的边
之后得到了两个联通块,我们对这两个联通块求一下直径
考虑连接哪两个点会使得新直径尽量小
显然分别从这两个联通块里找到一个点,这个点到联通块内最远的点距离最小
新直径就是\(max\{r_1,r_2,w+d_1+d_2\}\),\(r_1,r_2\)是两个联通块的直径,\(w\)是断开的边的边权,\(d_1,d_2\)是联通块内最远的点距离最小的距离
代码
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#define re register
#define maxn 5005
#define LL long long
inline int max(int a,int b) {return a>b?a:b;}
inline int min(int a,int b) {return a<b?a:b;}
inline int read()
{
char c=getchar();int x=0;
while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9') x=(x<<3)+(x<<1)+c-48,c=getchar();return x;
}
struct E{int v,nxt,w;}e[maxn<<1];
int head[maxn],f[maxn],g[maxn],t[maxn],T[maxn],F[maxn],dp[maxn];
int n,num,R,ans,root;
inline void add(int x,int y,int z) {e[++num].v=y;e[num].w=z;e[num].nxt=head[x];head[x]=num;}
void dfs(int x,int fa)
{
f[x]=g[x]=0;
for(re int i=head[x];i;i=e[i].nxt)
if(e[i].v!=fa)
{
if(!fa&&root==e[i].v) continue;
dfs(e[i].v,x);
if(f[e[i].v]+e[i].w>f[x]) g[x]=f[x],f[x]=f[e[i].v]+e[i].w;
else if(f[e[i].v]+e[i].w>g[x]) g[x]=f[e[i].v]+e[i].w;
else if(g[e[i].v]+e[i].w>g[x]) g[x]=g[e[i].v]+e[i].w;
}
}
void redfs(int x,int fa)
{
for(re int i=head[x];i;i=e[i].nxt)
if(e[i].v!=fa)
{
if(!fa&&root==e[i].v) continue;
t[e[i].v]=t[x]+e[i].w;
if(f[e[i].v]+e[i].w==f[x]) t[e[i].v]=max(t[e[i].v],g[x]+e[i].w);
else t[e[i].v]=max(t[e[i].v],f[x]+e[i].w);
redfs(e[i].v,x);
}
dp[x]=max(f[x],t[x]);
}
int find(int x,int fa)
{
int k=dp[x];
for(re int i=head[x];i;i=e[i].nxt)
if(e[i].v!=fa)
{
if(!fa&&root==e[i].v) continue;
k=min(k,find(e[i].v,x));
}
return k;
}
void check(int x,int fa)
{
for(re int i=head[x];i;i=e[i].nxt)
if(e[i].v!=fa)
{
if(T[e[i].v]+F[e[i].v]==R)
{
root=e[i].v;
memset(t,0,sizeof(t));
dfs(e[i].v,x);redfs(e[i].v,x);
dfs(x,0);redfs(x,0);
int now=0;
for(re int j=1;j<=n;++j) now=max(now,f[j]+g[j]);
now=max(now,e[i].w+find(e[i].v,x)+find(x,0));
ans=min(ans,now);
}
check(e[i].v,x);
}
}
int main()
{
n=read();int x,y,z;
for(re int i=1;i<n;i++) x=read(),y=read(),z=read(),add(x,y,z),add(y,x,z);
dfs(1,0),redfs(1,0);
for(re int i=1;i<=n;i++) R=max(R,f[i]+g[i]);ans=R;
for(re int i=1;i<=n;i++) T[i]=t[i],F[i]=f[i];
check(1,0);
printf("%d\n",ans);
return 0;
}
【[TJOI2017]城市】的更多相关文章
- 【BZOJ4890】[TJOI2017]城市(动态规划)
[BZOJ4890][TJOI2017]城市(动态规划) 题面 BZOJ 洛谷 题解 数据范围都这样了,显然可以暴力枚举断开哪条边. 然后求出两侧直径,暴力在直径上面找到一个点,使得其距离直径两端点的 ...
- [洛谷P3761] [TJOI2017]城市
洛谷题目链接:[TJOI2017]城市 题目描述 从加里敦大学城市规划专业毕业的小明来到了一个地区城市规划局工作.这个地区一共有ri座城市,<-1条高速公路,保证了任意两运城市之间都可以通过高速 ...
- 换根DP+树的直径【洛谷P3761】 [TJOI2017]城市
P3761 [TJOI2017]城市 题目描述 从加里敦大学城市规划专业毕业的小明来到了一个地区城市规划局工作.这个地区一共有ri座城市,<-1条高速公路,保证了任意两运城市之间都可以通过高速公 ...
- bzoj4890[Tjoi2017]城市(树的半径)
4890: [Tjoi2017]城市 Time Limit: 30 Sec Memory Limit: 128 MBSubmit: 149 Solved: 91[Submit][Status][D ...
- [TJOI2017]城市(树的直径)
[TJOI2017]城市 题目描述 从加里敦大学城市规划专业毕业的小明来到了一个地区城市规划局工作.这个地区一共有ri座城市,<-1条高速公路,保证了任意两运城市之间都可以通过高速公路相互可达, ...
- [BZOJ4890][TJOI2017]城市(DP)
题目描述 从加里敦大学城市规划专业毕业的小明来到了一个地区城市规划局工作.这个地区一共有ri座城市,<-1条高速公路,保证了任意两运城市之间都可以通过高速公路相互可达,但是通过一条高速公路需要收 ...
- BZOJ4890 & 洛谷3761:[TJOI2017]城市——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=4890 https://www.luogu.org/problemnew/show/P3761 从加 ...
- [TJOI2017]城市 【树的直径+暴力+优化】
Online Judge:Luogu P3761 Label:树的直径,暴力 题目描述 从加里敦大学城市规划专业毕业的小明来到了一个地区城市规划局工作.这个地区一共有n座城市,n-1条高速公路,保证了 ...
- luogu P3761 [TJOI2017]城市 树的直径 bfs
LINK:城市 谢邀,学弟说的一道毒瘤题. 没有真正的省选题目毒瘤 或者说 写O(n)的做法确实毒瘤. 这里给一个花20min就写完的非常好写的暴力. 容易想到枚举哪条边删掉 删掉之后考虑在哪两个点上 ...
- [TJOI2017]城市
嘟嘟嘟 这题刚开始想复杂了,想什么dp去了,其实没那么难. 考虑断掉一条边,记分离出来的两棵子树为A和B,那么合并后的树的直径可能有三种情况: 1.A的直径. 2.B的直径 3.A的半径+边权+B的半 ...
随机推荐
- (转)netstat 命令详解
netstat 命令详解 原文:https://www.cnblogs.com/xieshengsen/p/6618993.html netstat命令是一个监控TCP/IP网络的非常有用的工具,它 ...
- IDEA 导入cordova3.5工程目录注意事项
IDEA 导入cordova3.5工程目录注意事项 1 eclipse很不稳定,有很多小问题.平时我自己用idea,但是当用cordova3.5创建好工程目录是,用eclipse导入时没有问题的.但是 ...
- Fragment、Activity比较——Android碎片介绍
Fragment是Android honeycomb 3.0新增的概念,Fragment名为碎片不过却和Activity十分相似,下面介绍下Android Fragment的作用和用法.Fragmen ...
- Unity3D之OnGUI知识总结
相对位置参考 http://blog.csdn.net/sunny__chen/article/details/51323265 自适应屏幕收缩 http://www.360doc.com/co ...
- java线程中的 sleep() wait() yield()
sleep()方法是让线程休眠 可以指定时间 其实就是让线程进入阻塞状态 指定的时间过后 进入就绪状态 不释锁 相当于抱着锁睡觉 wait() 让线程进入等待状态 被唤醒后才会继续执行 ...
- vsCode代码缩略图
vsCode配置代码缩略图: 文件--首选项--设置 搜索 minimap true 打开 false 关闭
- (三)HTML中的列表标签、框架集及表单标签
一.HTML的列表标签 在网页中,经常可以看到,有的内容排列如同word里面的项目编号,这就是HTML的无序排列和有序排列起到的作用.. HTML之无序排列:<ul></ul> ...
- Introduction of Servlet Filter(了解Servlet之Filter)
API文档中介绍了public Interface Filter(公共接口过滤器) Servlet API文档中是这样介绍的: ‘A filter is an object that performs ...
- 2.浅析Hadoop之YARN
YARN也是主从架构,主节点是ResourceManager,从节点是NodeManager,是一种资源分配及任务管理的组件 针对每个任务还有ApplicationMaster应用管理者和Contai ...
- vba SpecialCells(Type,Value) 参数说明
Range.SpecialCells 方法可以返回一个 Range 对象,该对象代表与指定类型和值匹配的所有单元格. 其语法如下: 表达式.SpecialCells(Type,Value) 其Type ...