一,    M阶B+树的定义(M阶是指一个节点最多能拥有的孩子数,M>2):

图1.1 3阶B+树

(1)根结点只有1个,分支数量范围[2,m]。

(2)除根以外的非叶子结点,每个结点包含分支数范围[[m/2],m],其中[m/2]表示取大于m/2的最小整数。

(3)所有非叶子节点的关键字数目等于它的分支数量。

(4) 所有叶子节点都在同一层,且关键字数目范围是[[m/2],m],其中[m/2]表示取大于m/2的最小整数。

(5)所有非叶子节点的关键字可以看成是索引部分,这些索引等于其子树(根结点)中的最大(或最小)关键字。例如一个非叶子节点包含信息: (n,A0,K0, A1,K1,……,Kn,An),其中Ki为关键字,Ai为指向子树根结点的指针,n表示关键字个数。即Ai所指子树中的关键字均小于或等于Ki,而Ai+1所指的关键字均大于Ki(i=1,2,……,n)。

(6)叶子节点包含全部关键字的信息(非叶子节点只包含索引),且叶子结点中的所有关键字依照大小顺序链接(所以一个B+树通常有两个头指针,一个是指向根节点的root,另一个是指向最小关键字的sqt)。

二,    3阶B+树的插入举例:

l  例1:

往下图的3阶B+树中插入关键字9

首先查找9应插入的叶节点(最左下角的那一个),插入发现没有破坏B+树的性质,完毕。插完如下图所示:

l  例2:

往下图的3阶B+树插入20

首先查找20应插入的叶节点(第二个叶子节点),插入,如下图

发现第二个叶子节点已经破坏了B+树的性质,则把之分解成[20 21], [37 44]两个,并把21往父节点移,如下图

发现父节点也破坏了B+树的性质,则把之再分解成[15 21], [44 59]两个,并把21往其父节点移,如下图

这次没有破坏B+树的性质(如果还是不满足B+树的性质,可以递归上去,直到满足为至),插入完毕。

l  例3:

往下图的3阶B+树插入100

首先查找100应插入的叶节点(最后一个节点), 插入,如下图

修改其所有父辈节点的键值为100(只有插入比当前树的最大数大的数时要做此步),如下图

然后重复Eg.2的方法拆分节点,最后得

三,    3阶B+树的删除举例:

l  例1:

删除下图3阶B+树的关键字91

首先找到91所在叶节点(最后一个节点),删除之,如下图

没有破坏B+树的性质,删除完毕

l  例2:

删除下图3阶B+树的关键字97

首先找到97所在叶节点(最后一个节点),删除之,然后修改该节点的父辈的键字为91(只有删除树中最大数时要做此步),如下图

l  例3:

删除下图3阶B+树的关键字51

首先找到51所在节点(第三个节点),删除之,如下图

破坏了B+树的性质,从该节点的兄弟节点(左边或右边)借节点44,并修改相应键值,判断没有破坏B+树,完毕,如下图

l  例4:

删除下图3阶B+树的关键字59

首先找到59所在叶节点(第三个节点),删除之,如下图

破坏B+树性质,尝试借节点,无效(因为左兄弟节点被借也会破坏B+树性质),合并第二第三叶节点并调整键值,如下图

完毕。

l  例5:

删除下图3阶B+树的关键字63

首先找到63所在叶节点(第四个节点),删除之,如下图

合并第四五叶节点并调整键值,如下图

发现第二层的第二个节点不满足B+树性质,从第二层的第一个节点借59,并调整键值,如下图

完毕

[转]B+Tree图解的更多相关文章

  1. 图解MySQL索引(二)—为什么使用B+Tree

    失踪人口回归,近期换工作一波三折,耽误了不少时间,从今开始每周更新~ 索引是一种支持快速查询的数据结构,同时索引优化也是后端工程师的必会知识点.各个公司都有所谓的MySQL"军规" ...

  2. 图解MySQL索引--B-Tree(B+Tree)

    看了很多关于索引的博客,讲的大同小异.但是始终没有让我明白关于索引的一些概念,如B-Tree索引,Hash索引,唯一索引....或许有很多人和我一样,没搞清楚概念就开始研究B-Tree,B+Tree等 ...

  3. 转:图解Git[强烈推荐]

    https://my.oschina.net/xdev/blog/114383 再次感谢原著作者和中文翻译者. 此页图解git中的最常用命令.如果你稍微理解git的工作原理,这篇文章能够让你理解的更透 ...

  4. 图解call、apply、bind的异同及各种实战应用演示

    一.图解call.apply.bind的异同 JavaScript中函数可以通过3种方法改变自己的this指向,它们是call.apply.bind.它们3个非常相似,但是也有区别.下面表格可以很直观 ...

  5. 图解Android - Android GUI 系统 (2) - 窗口管理 (View, Canvas, Window Manager)

    Android 的窗口管理系统 (View, Canvas, WindowManager) 在图解Android - Zygote 和 System Server 启动分析一 文里,我们已经知道And ...

  6. 【转载】图解:二叉搜索树算法(BST)

    原文:图解:二叉搜索树算法(BST) 摘要: 原创出处:www.bysocket.com 泥瓦匠BYSocket 希望转载,保留摘要,谢谢!“岁月极美,在于它必然的流逝”“春花 秋月 夏日 冬雪”— ...

  7. 图解Git/图形化的Git参考手册

    此页图解git中的最常用命令.如果你稍微理解git的工作原理,这篇文章能够让你理解的更透彻. 基本用法 上面的四条命令在工作目录.暂存目录(也叫做索引)和仓库之间复制文件. ● git add fil ...

  8. Android源码是这样搞到的(图解)

    Android学习到一定程度,就一定要多读代码多思考,Android源码就是很好的学习材料,本文就是把Android的源码下载下来.我们知道Android的源码是用Git这个分布式版本号控制工具管理的 ...

  9. TreeMap Red-Black tree

    本文以Java TreeMap为例,从源代码层面,结合详细的图解,剥茧抽丝地讲解红黑树(Red-Black tree)的插入,删除以及由此产生的调整过程. 总体介绍 之所以把TreeSet和TreeM ...

随机推荐

  1. PTA 银行排队问题之单队列多窗口服务(25 分)

    银行排队问题之单队列多窗口服务(25 分) 假设银行有K个窗口提供服务,窗口前设一条黄线,所有顾客按到达时间在黄线后排成一条长龙.当有窗口空闲时,下一位顾客即去该窗口处理事务.当有多个窗口可选择时,假 ...

  2. JeeSite基础知识(一)

  3. 关于Oracle to_char()函数中的IW,WW 周别显示

    1)ww的算法为每年1月1日为第一周开始,date+6为每一周结尾 例如20050101为第一周的第一天,而第一周的最后一天为20050101+6=20050107 公式 每周第一天 :date + ...

  4. CNN感受野计算

    无痛理解CNN中的感受野receptive field CNN中感受野的计算 从直观上讲,感受野就是视觉感受区域的大小.在卷积神经网络中,感受野的定义是决定某一层输出结果中一个元素所对应的输入层的区域 ...

  5. 使用Java进行远程方法调用的几个方案及比较

    Java远程方法调用是编程过程中比较常见的问题,列举一下主要包括如下几类: 1.Java RMI (Remote Method Invocation) 2.EJB远程接口调用 3.WebService ...

  6. 使用jq.lazyload.js,解决设置loading图片的问题

    最近在使用lazyload的时候,遇上一个问题.当对img做宽100%时,就是placeholder的loading图片也会100%宽,这样一般来说loading图片就会变得很大.实在是不能应用到项目 ...

  7. AngularJS学习(二)——Angular应用的解析

    本节描述AngularJS应用程序的三个组成部分,并解释它们如何映射到模型-视图-控制器设计模式 模板(Template) 模板是您用HTML和CSS编写的文件,展现应用的视图.您可给HTML添加新的 ...

  8. 用Python+Django在Eclipse环境下开发web网站

    一.创建一个项目如果这是你第一次使用Django,那么你必须进行一些初始设置.也就是通过自动生成代码来建立一个Django项目--一个Django项目的设置集,包含了数据库配置.Django详细选项设 ...

  9. Laravel 5.3 auth中间件底层实现详解(转)

    1. 注册认证中间件, 在文件 app/Http/Kernel.php 内完成: protected $routeMiddleware = [ 'auth' => \Illuminate\Aut ...

  10. PHP自动加载配置ArrayAccess类

    ArrayAccess是PHP的类,可以把对象当成数组来使用访问. Config.php   配置类 <?php namespace IMooc; class Config implements ...