3643: Phi的反函数

Time Limit: 10 Sec  Memory Limit: 64 MB
Submit: 298  Solved: 192
[Submit][Status][Discuss]

Description

Input

 

Output

 

Sample Input

4

Sample Output

5
 
  这道题我只能说是一道披着搜索外衣的数学题,核心都在数学知识上,于是数学能力令人发指的我跪了……
  在讲这道题之前我们先明确一下几点:
    1.一个数x的质因子若大于sqrt(x)则这个质因子最多只有一个。
    2.我们设pk为已知数x的第k个素因子ak为该素因子在x的素因子中有几个则φ(x)=p1^(a1-1)*(p1-1)*p2^(a2-1)*(p2-1)……
    3.由1可知我们线筛只用筛到sqrt(INF),大于它直接暴力检测。
    4.由2可知如果对于一个素数p,p-1是n的因子,则p可对答案产生贡献。
  于是知道了以上几点我们就好说多了,我们只要枚举每一个素数p,如果p-1是当前now的因子就接下去dfs并枚举a,对于那个大于sqrt(n)的因子我们直接判断如果now+1是素数且now+1>sqrt(n),我们就检查他是否对答案有贡献。
  不知道有没有人和我和Q某犇一样对于是now+1还是now还是now-1有疑问。为了周全,我还是说一下。如果当前now满足以上条件那么此时now=p^(a-1)*(p-1),由于p大于sqrt(n),a一定为1,所以就变成了now=p-1,那么p=now+1。
  差点忘说了,我们为什么会去选择dfs这种方式呢?因为貌似可以证明,在题目给的数据最多只有10个(不同的)素因子,一个素因子最多只出现30次,所以dfs没跑。
 #include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
#include<cmath>
#include<map>
#define N 50005
using namespace std;
long long sq,n,ss[N],zz,ans=;
bool fss[N];
bool pri(long long x)
{
for(int i=;i<=sqrt(x);i++)
if(x%i==)return ;
return ;
}
void dfs(long long sum,long long wz,long long now)
{
if(sum>ans)return;
if(now==)
{
ans=min(ans,sum);
return;
}
if(now>sq&&pri(now+))ans=min(ans,(now+)*sum);
for(int i=wz;i<=zz&&ss[i]-<=sq&&ss[i]-<=now;i++)
{
if(now%(ss[i]-)==)
{
int x=now/(ss[i]-),y=sum*ss[i];
dfs(y,i+,x);
while(x%ss[i]==)
{
x/=ss[i],y*=ss[i];
dfs(y,i+,x);
}
}
}
}
int main()
{
scanf("%lld",&n);
sq=sqrt(n);
for(int i=;i<=sqrt(n);i++)
{
if(!fss[i])
{
zz++;
ss[zz]=i;
}
for(int j=;j<=zz&&i*ss[j]<N;j++)
{
fss[i*ss[j]]=;
if(i%ss[j]==)break;
}
}
dfs(,,n);
if(ans<2147483648ll)
printf("%lld\n",ans);
else printf("-1\n");
return ;
}

bzoj 3643Phi的反函数的更多相关文章

  1. 【BZOJ 3642】Phi的反函数

    http://www.lydsy.com/JudgeOnline/problem.php?id=3643 因为\[\varphi(n)=\prod_i p_i^{k_i-1}(p_i-1),n=\pr ...

  2. [BZOJ]3643 Phi的反函数

    我承认开这篇文章只是因为好笑…… 估计Zky神看见3737会很郁闷吧. http://www.lydsy.com/JudgeOnline/problem.php?id=3643 本来想直接交3737改 ...

  3. 【BZOJ 3643】Phi的反函数 数搜索

    这道题是典型的数搜索,讲究把数一层一层化小,而且还有最重要的大质数剪枝. #include <cstdio> #include <cmath> typedef long lon ...

  4. BZOJ 2818

    2818:GCD Description 给定整数$N$,求$1\le x,y\le N$且$\gcd{x,y}$为素数的数对$(x,y)$有多少对. Input $N$ Output RT Samp ...

  5. [bzoj 1471] 不相交路径 (容斥原理)

    题目描述 给出一个N(n<=150)N(n<=150)N(n<=150)个结点的有向无环简单图.给出444个不同的点aaa,bbb,ccc,ddd,定义不相交路径为两条路径,两条路径 ...

  6. BZOJ 2127: happiness [最小割]

    2127: happiness Time Limit: 51 Sec  Memory Limit: 259 MBSubmit: 1815  Solved: 878[Submit][Status][Di ...

  7. BZOJ 3275: Number

    3275: Number Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 874  Solved: 371[Submit][Status][Discus ...

  8. BZOJ 2879: [Noi2012]美食节

    2879: [Noi2012]美食节 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1834  Solved: 969[Submit][Status] ...

  9. bzoj 4610 Ceiling Functi

    bzoj 4610 Ceiling Functi Description bzoj上的描述有问题 给出\(n\)个长度为\(k\)的数列,将每个数列构成一个二叉搜索树,问有多少颗形态不同的树. Inp ...

随机推荐

  1. Win8 Metro(C#)数字图像处理--2.64图像高斯滤波算法

    原文:Win8 Metro(C#)数字图像处理--2.64图像高斯滤波算法  [函数名称]   高斯平滑滤波器      GaussFilter(WriteableBitmap src,int r ...

  2. Windows 10开发基础——XML和JSON (二)

    主要内容: Linq to XML Newtonsoft.Json.Linq来解析JSON 博客园RSS(http://www.cnblogs.com/rss)的解析 UWP调用自己实现的Web AP ...

  3. 分布式文件系统的比较,115网盘用了fastdfs

    分布式文件系统 分布式文件系统,作为网盘的基础,应用底层文件管理.而分布式文件系统之上,用户文件的权限,用户目录管理都是由非分布式文件系统管理. 分布式文件系统需要关心的主要内容: 文件分布/数据分布 ...

  4. 什么是TOML?

    配置文件的使用由来已久,从.ini.XML.JSON.YAML再到TOML,语言的表达能力越来越强,同时书写便捷性也在不断提升. TOML是前GitHub CEO, Tom Preston-Werne ...

  5. 零元学Expression Blend 4 - Chapter 41 Flash做的到的Blend也可以!轻松制作拥有动画的MenuBar!(中)

    原文:零元学Expression Blend 4 - Chapter 41 Flash做的到的Blend也可以!轻松制作拥有动画的MenuBar!(中) 我们接着进行动画MenuBar的制作 接续着上 ...

  6. Android零基础入门第66节:RecyclerView点击事件处理

    前面两期学习了RecyclerView的简单使用,并为其item添加了分割线.在实际运用中,无论是List还是Grid效果,基本都会伴随着一些点击操作,那么本期就来一起学习RecyclerView的点 ...

  7. 分布式存储系统GlusterFS初体验

    摘要: GlusterFS是Scale-Out存储解决方案Gluster的核心,它是一个开源的分布式文件系统,具有强大的横向扩展能力,通过扩展能够支持数PB存储容量和处理数千客户端.GlusterFS ...

  8. Ruby元编程:单元测试框架如何找到测试用例

    前几天看了Google Testing Blog上的一篇文章讲到C++因为没有反射机制,所以如何注册测试用例就成了一件需要各显神通的事情.从我的经验来看,无论是Google的GTest还是微软的LTM ...

  9. Kafka Topic的详细信息 捎带主要的安装步骤

    1. 安装步骤 Kafka伪分布式安装的思路跟Zookeeper的伪分布式安装思路完全一样,不过比Zookeeper稍微简单些(不需要创建myid文件), 主要是针对每个Kafka服务器配置一个单独的 ...

  10. uni-app中Vuex的引用

    //store 中 store.js import Vue from 'vue' import Vuex from 'vuex' Vue.use(Vuex) const store = new Vue ...