利用data.table包变形数据

一. 基础概念

data.table 这种数据结构相较于R中本源的data.frame 在数据处理上有运算速度更快,内存运用更高效,可认为它是data.frame 的升级版。同时,data.table 包具备更多更强的功能,它基本工作形式是,

dt [i, j, by]

dt 为data.table 结构

i 为行,j 为列,by 为分组

二. 创建 data.table

和data.frame一样,如下:

data.table(a=c(1, 2), b=c("a", "b"))

a b
1: 1 a
2: 2 b

转化data frame 或list 为 data.table,使用 setDT(df) (仅限于data.frame 和 list),as.data.table(df)(使用范围更广)

三. 取子集

3.1 行向(rows):

3.1.1. 以row numbers,dt [1:2, ]

3.1.2. 以条件(本质上是逻辑值 TRUE OR FALSE), dt [a>5, ]

有如下逻辑操作符:

<  <=  is.na()  %in%   |  %like%

>  >=  !is.na()  !          &  %between%  

3.2 列向(columns):

3.2.1. 抽提(同行,与data.frame一致)

dt [, c(2)]

dt [, .(b, c)]

3.2.2. 归纳

dt [, .(x=sum(a))]       --     创建一个新data.table 用a列的和

其他函数如:mean,median, min, max等等

3.2.3. 计算列 (在:= 接上计算表达式)

dt [, c:=1+2]

dt[a == 1, c := 1 + 2]

dt[,`:=`(c = 1 , d = 2)]     --    计算分开计算多列

a b c d
1: 1 a 1 2
2: 2 b 1 2

3.2.4. 删除某列

dt[,c := NULL]

3.2.5. 转换某列

dt[,b := as.integer(b)] – 如as.integer(), as.numeric(),as.character(), as.Date()等函数

四. 分组(by)

dt[, j, by = .(a)]      --  由a列内容进行分组

dt[, j, keyby= .(a)]  --  由a列内容进行分组,同时分类排序

常规分组操作:

dt[, .(c = sum(b)), by = a] –  以a列分组来计算b列和
dt[,c := sum(b), by = a] –  创建新列c来储存按a列分组来计算b列和的结果
dt[, .SD[1], by = a] – 抽提a列分组的第一行
dt[, .SD[.N], by = a] – 抽提a列分组的最后一行

五. 链式操作

dt[…][…]

六. data.table的功能函数(重点)

6.1 重排

setorder(dt, a, -b)  -- a列升序,b列降序(-)

注意:data.table中以“set”为前缀的功能函数以及操作符“:=”行使功能时,在内存中不创建副本,因此 setDT(df) 比 df <- as.data.table(df)更高效。

6.2 去重

unique(dt, by = c("a", "b")) -- 依次去重a, b列

uniqueN(dt, by = c("a", "b")) -- 计数去重后的行数

6.3 修改列名

setnames(dt, c("a","b"), c("x", "y"))

6.4 设置键(SET KEYS)

setkey(dt, a, b) -- 设置键是为快速重复查找特殊列用dt[.(value), ],或者是为了合并列用dt_a[dt_b]

七. 合并 data.tables

7.1 按列合并

dt_a[dt_b,on = .(b = y)]  -- 用于两个data.table有相同列的合并,如dt_a的b列与dt_b的y列相同

dt_a[dt_b,on = .(b = y, c > z)]  -- 上式的扩展,不仅用于相同列,更用于带有条件的合并,如不仅满足dt_a的b列与dt_b的y列相同,而且要满足dt_a的c列大于dt_b的z列

7.2 滚动合并

dt_a[dt_b, on = .(id = id, date = date), roll = TRUE]  --  不仅按id,data进行匹配,同时保持向最近一行进行匹配

7.3 全合并

rbind(dt_a, dt_b) -- 行合并

cbind(dt_a, dt_b) -- 列合并

八. 重构data.table(与reshape2包相似)

长数据 变 宽数据

dcast(dt, id ~ y, value.var= c("a", "b"))

宽数据 变 长数据

melt(dt,
id.vars= c("id"),
measure.vars= patterns("^a", "^b"),
variable.name = "y",
value.name = c("a", "b"))

九. 应用Apply 函数

dt[, lapply(.SD, mean), .SDcols = c("a", "b")]   ---

e.g. mean(), as.character(),
which.max()。

cols <-c("a")
dt[, paste0(cols, "_m") := lapply(.SD, mean),
.SDcols = cols] --- 重命名运算后的列

十. 对连续行计数

dt[, c := 1:.N, by = b] -- 分组后,计数行数,即计算每组有多少行

dt[, c := shift(a, 1), by = b]

十一. 读取和写入文件

fread("file.csv")

fread("file.csv", select = c("a", "b")) 这个函数很强大,除了读文件以外,可以直接读网址

fwrite(dt, "file.csv")  写入文件

基于R数据分析之常用Package讲解系列--1. data.table的更多相关文章

  1. R语言学习笔记(十七):data.table包中melt与dcast函数的使用

    melt函数可以将宽数据转化为长数据 dcast函数可以将长数据转化为宽数据 > DT = fread("melt_default.csv") > DT family_ ...

  2. Create and format Word documents using R software and Reporters package

    http://www.sthda.com/english/wiki/create-and-format-word-documents-using-r-software-and-reporters-pa ...

  3. 基于java平台的常用资源整理

    这里整理了基于java平台的常用资源 翻译 from :akullpp | awesome-java 大家一起学习,共同进步. 如果大家觉得有用,就mark一下,赞一下,或评论一下,让更多的人知道.t ...

  4. RDIFramework.NET — 基于.NET的快速信息化系统开发框架 — 系列目录

    RDIFramework.NET — 基于.NET的快速信息化系统开发框架 — 系列目录 RDIFramework.NET,基于.NET的快速信息化系统开发.整合框架,给用户和开发者最佳的.Net框架 ...

  5. 这里整理了基于java平台的常用资源

    这里整理了基于java平台的常用资源 翻译 from :akullpp | awesome-java 大家一起学习,共同进步. 如果大家觉得有用,就mark一下,赞一下,或评论一下,让更多的人知道.t ...

  6. R语言中常用包(二)

    数据导入 以下R包主要用于数据导入和保存数据 feather:一种快速,轻量级的文件格式.在R和python上都可使用readr:实现表格数据的快速导入.中文介绍可参考这里readxl:读取Micro ...

  7. R语言数据分析利器data.table包—数据框结构处理精讲

    R语言数据分析利器data.table包-数据框结构处理精讲 R语言data.table包是自带包data.frame的升级版,用于数据框格式数据的处理,最大的特点快.包括两个方面,一方面是写的快,代 ...

  8. Linux学习之路--常用命令讲解

    Linux常用命令讲解 1.命令格式:命令 [-选项]  [参数] 超级用户的提示符是# 一般用户的提示符是$ 如:ls -la /usr说明: 大部分命令遵从该格式多个选项时,可以一起写 eg:ls ...

  9. R数据分析:潜类别轨迹模型LCTM的做法,实例解析

    最近看了好多潜类别轨迹latent class trajectory models的文章,发现这个方法和我之前常用的横断面数据的潜类别和潜剖面分析完全不是一个东西,做纵向轨迹的正宗流派还是这个方法,当 ...

随机推荐

  1. Javascript实现10种排序算法

    1.冒泡排序: 比较相邻的两个数,如果前一个数大于后一个数,就将这两个数换位置.每一次遍历都会将本次遍历最大的数冒泡到最后.为了将n个数排好序,需要n-1次遍历.如果某次遍历中,没有调整任何两个相邻的 ...

  2. Zeebe服务学习5-多实例特性实践

    一.背景 在0.21版本之前,Zeebe不支持多实例元素,在2019年10月9号发布的0.21版本中,加入这一特性, 主要是体现在Zeebe Modeler 0.7.0以及之后的版本中. 二.特性介绍 ...

  3. 9.Nginx常用模块

    1.nginx开启目录浏览 提供下载功能 默认情况下,网站返回index指定的主页,若该网站不存在主页,则将请求交给autoindex模块 如果开启autoindex模块,则提供一个下载的页面, 如果 ...

  4. 使用zepto中animate报错“Uncaught TypeError: this.bind is not a function”的解决办法

    在使用zepto时,我先引入zepto.min.js,然后引入fx.js,但是在使用animate函数时,控制台却报如下错误: Uncaught TypeError: this.bind is not ...

  5. Mybaits 源码解析 (六)----- 全网最详细:Select 语句的执行过程分析(上篇)(Mapper方法是如何调用到XML中的SQL的?)

    上一篇我们分析了Mapper接口代理类的生成,本篇接着分析是如何调用到XML中的SQL 我们回顾一下MapperMethod 的execute方法 public Object execute(SqlS ...

  6. maven项目部署到tomcat方法

    今天记录下,maven项目部署到服务器的过程 1.首先在ide中里将自己的maven项目打包 mvn clean install 2. 看是否需要修改war包的名字,如果要修改,就用命令 mv xxx ...

  7. 学习笔记03http协议

    1.浏览器就是一个sokect客户端,使用http协议与服务器进行交流.http请求:请求头:(请求方法)sp(url)sp http/1.x <cr><lf>(通用头类型名) ...

  8. 学习笔记34_EF上下文管理

    *上下文对象dbContext最好不要频繁的使用Using(var dbContext = new ....):那么就会产生过多的数据库交互:而且每个dbContext中村的数据,由于操作不同,数据可 ...

  9. mysql设计规范一

    原文地址:http://www.jianshu.com/p/33b7b6e0a396 主键 表中每一行都应该有可以唯一标识自己的一列(或一组列). 一个顾客可以使用顾客编号列,而订单可以使用订单ID, ...

  10. 合并JSON对象的正确方式

    一. 前言 “JSON对象合并”是前端开发和 NodeJS 环境开发中非常常见的操作.开发者通常会通过循环遍历或一些库封装的方法或 JavaScript ECMAScript 2015 定义的 Obj ...