数据结构与算法---树结构(Tree structure)
为什么需要树这种数据结构
数组存储方式的分析
- 优点:通过下标方式访问元素,速度快。对于有序数组,还可使用二分查找提高检索速度。
- 缺点:如果要检索具体某个值,或者插入值(按一定顺序)会整体移动,效率较低。
链式存储方式的分析
- 优点:在一定程度上对数组存储方式有优化(比如:插入一个数值节点,只需要将插入节点,链接到链表中即可, 删除效率也很好)。
- 缺点:在进行检索时,效率仍然较低,比如(检索某个值,需要从头节点开始遍历)
树存储方式的分析
能提高数据存储,读取的效率, 比如利用 二叉排序树(Binary Sort Tree),既可以保证数据的检索速度,同时也可以保证数据的插入,删除,修改的速度。
树结构示意图
二叉树的概念
- 树有很多种,每个节点最多只能有两个子节点的一种形式称为二叉树。
- 二叉树的子节点分为左节点和右节点。
- 如果该二叉树的所有叶子节点都在最后一层,并且结点总数= 2^n -1 , n 为层数,则我们称为满二叉树。
- 如果该二叉树的所有叶子节点都在最后一层或者倒数第二层,而且最后一层的叶子节点在左边连续,倒数第二层的叶子节点在右边连续,我们称为完全二叉树。
二叉树遍历的说明
前序遍历: 先输出父节点,再遍历左子树和右子树
中序遍历: 先遍历左子树,再输出父节点,再遍历右子树
后序遍历: 先遍历左子树,再遍历右子树,最后输出父节点
小结: 看输出父节点的顺序,就确定是前序,中序还是后序
示例:
将下列二叉树 前序、中序、后序输出
package com.tree; /**
* Created by wanbf on 2019/7/9.
*/ public class BinaryTreeDemo { public static void main(String[] args) {
//先需要创建一颗二叉树
BinaryTree binaryTree = new BinaryTree();
//创建需要的结点
HeroNode root = new HeroNode(1, "宋江");
HeroNode node2 = new HeroNode(2, "吴用");
HeroNode node3 = new HeroNode(3, "卢俊义");
HeroNode node4 = new HeroNode(4, "林冲");
//HeroNode node5 = new HeroNode(5, "关胜"); //说明,我们先手动创建该二叉树,后面我们学习递归的方式创建二叉树
root.setLeft(node2);
root.setRight(node3);
node3.setRight(node4);
//node3.setLeft(node5);
binaryTree.setRoot(root); //测试
System.out.println("前序遍历"); // 1,2,3,4
binaryTree.preOrder(); //测试
System.out.println("中序遍历");
binaryTree.infixOrder(); // 2,1,3,4 System.out.println("后序遍历");
binaryTree.postOrder(); // 2,4,3,1 } } //定义BinaryTree 二叉树
class BinaryTree {
private HeroNode root; public void setRoot(HeroNode root) {
this.root = root;
}
//前序遍历
public void preOrder() {
if(this.root != null) {
this.root.preOrder();
}else {
System.out.println("二叉树为空,无法遍历");
}
} //中序遍历
public void infixOrder() {
if(this.root != null) {
this.root.infixOrder();
}else {
System.out.println("二叉树为空,无法遍历");
}
}
//后序遍历
public void postOrder() {
if(this.root != null) {
this.root.postOrder();
}else {
System.out.println("二叉树为空,无法遍历");
}
}
} //先创建HeroNode 结点
class HeroNode {
private int no;
private String name;
private HeroNode left; //默认null
private HeroNode right; //默认null
public HeroNode(int no, String name) {
this.no = no;
this.name = name;
}
public int getNo() {
return no;
}
public void setNo(int no) {
this.no = no;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public HeroNode getLeft() {
return left;
}
public void setLeft(HeroNode left) {
this.left = left;
}
public HeroNode getRight() {
return right;
}
public void setRight(HeroNode right) {
this.right = right;
}
@Override
public String toString() {
return "HeroNode [no=" + no + ", name=" + name + "]";
} //编写前序遍历的方法
public void preOrder() {
System.out.println(this); //先输出父结点
//递归向左子树前序遍历
if(this.left != null) {
this.left.preOrder();
}
//递归向右子树前序遍历
if(this.right != null) {
this.right.preOrder();
}
}
//中序遍历
public void infixOrder() { //递归向左子树中序遍历
if(this.left != null) {
this.left.infixOrder();
}
//输出父结点
System.out.println(this);
//递归向右子树中序遍历
if(this.right != null) {
this.right.infixOrder();
}
}
//后序遍历
public void postOrder() {
if(this.left != null) {
this.left.postOrder();
}
if(this.right != null) {
this.right.postOrder();
}
System.out.println(this);
}
}
代码
前序遍历
HeroNode [no=1, name=宋江]
HeroNode [no=2, name=吴用]
HeroNode [no=3, name=卢俊义]
HeroNode [no=4, name=林冲]
中序遍历
HeroNode [no=2, name=吴用]
HeroNode [no=1, name=宋江]
HeroNode [no=3, name=卢俊义]
HeroNode [no=4, name=林冲]
后序遍历
HeroNode [no=2, name=吴用]
HeroNode [no=4, name=林冲]
HeroNode [no=3, name=卢俊义]
HeroNode [no=1, name=宋江]
输出
前上图的 3号节点 "卢俊" , 增加一个左子节点 [5, 关胜]
使用前序,中序,后序遍历,请写出各自输出的顺序是什么?
public static void main(String[] args) {
//先需要创建一颗二叉树
BinaryTree binaryTree = new BinaryTree();
//创建需要的结点
HeroNode root = new HeroNode(1, "宋江");
HeroNode node2 = new HeroNode(2, "吴用");
HeroNode node3 = new HeroNode(3, "卢俊义");
HeroNode node4 = new HeroNode(4, "林冲");
HeroNode node5 = new HeroNode(5, "关胜"); //说明,我们先手动创建该二叉树,后面我们学习递归的方式创建二叉树
root.setLeft(node2);
root.setRight(node3);
node3.setRight(node4);
node3.setLeft(node5);
binaryTree.setRoot(root); //测试
System.out.println("前序遍历"); // 1,2,3,5,4
binaryTree.preOrder(); //测试
System.out.println("中序遍历");
binaryTree.infixOrder(); // 2,1,5,3,4 System.out.println("后序遍历");
binaryTree.postOrder(); // 2,5,4,3,1 }
代码
前序遍历
HeroNode [no=1, name=宋江]
HeroNode [no=2, name=吴用]
HeroNode [no=3, name=卢俊义]
HeroNode [no=5, name=关胜]
HeroNode [no=4, name=林冲]
中序遍历
HeroNode [no=2, name=吴用]
HeroNode [no=1, name=宋江]
HeroNode [no=5, name=关胜]
HeroNode [no=3, name=卢俊义]
HeroNode [no=4, name=林冲]
后序遍历
HeroNode [no=2, name=吴用]
HeroNode [no=5, name=关胜]
HeroNode [no=4, name=林冲]
HeroNode [no=3, name=卢俊义]
HeroNode [no=1, name=宋江]
输出
二叉树-查找指定节点
1.编写前序查找,中序查找和后序查找的方法。
2.并分别使用三种查找方式,查找 heroNO = 5 的节点
3.并分析各种查找方式,分别比较了多少次
思路分析
/**
* Created by wanbf on 2019/7/9.
*/
public class BinaryTreeDemo { public static void main(String[] args) {
//先需要创建一颗二叉树
BinaryTree binaryTree = new BinaryTree();
//创建需要的结点
HeroNode root = new HeroNode(1, "宋江");
HeroNode node2 = new HeroNode(2, "吴用");
HeroNode node3 = new HeroNode(3, "卢俊义");
HeroNode node4 = new HeroNode(4, "林冲");
HeroNode node5 = new HeroNode(5, "关胜"); //说明,我们先手动创建该二叉树,后面我们学习递归的方式创建二叉树
root.setLeft(node2);
root.setRight(node3);
node3.setRight(node4);
node3.setLeft(node5);
binaryTree.setRoot(root); //前序遍历
//前序遍历的次数 :4
System.out.println("前序遍历方式~~~");
HeroNode resNode = binaryTree.preOrderSearch(5);
if (resNode != null) {
System.out.printf("找到了,信息为 no=%d name=%s", resNode.getNo(), resNode.getName());
} else {
System.out.printf("没有找到 no = %d 的英雄", 5);
} //中序遍历查找
//中序遍历3次
System.out.println("中序遍历方式~~~");
HeroNode resNode = binaryTree.infixOrderSearch(5);
if (resNode != null) {
System.out.printf("找到了,信息为 no=%d name=%s", resNode.getNo(), resNode.getName());
} else {
System.out.printf("没有找到 no = %d 的英雄", 5);
} //后序遍历查找
//后序遍历查找的次数 2次
System.out.println("后序遍历方式~~~");
HeroNode resNode = binaryTree.postOrderSearch(5);
if (resNode != null) {
System.out.printf("找到了,信息为 no=%d name=%s", resNode.getNo(), resNode.getName());
} else {
System.out.printf("没有找到 no = %d 的英雄", 5);
}
} } //定义BinaryTree 二叉树
class BinaryTree {
private HeroNode root; public void setRoot(HeroNode root) {
this.root = root;
}
//前序遍历查找
public HeroNode preOrderSearch(int no) {
if(root != null) {
return root.preOrderSearch(no);
} else {
return null;
}
}
//中序遍历查找
public HeroNode infixOrderSearch(int no) {
if(root != null) {
return root.infixOrderSearch(no);
}else {
return null;
}
}
//后序遍历查找
public HeroNode postOrderSearch(int no) {
if(root != null) {
return this.root.postOrderSearch(no);
}else {
return null;
}
}
} //先创建HeroNode 结点
class HeroNode {
private int no;
private String name;
private HeroNode left; //默认null
private HeroNode right; //默认null
public HeroNode(int no, String name) {
this.no = no;
this.name = name;
}
public int getNo() {
return no;
}
public void setNo(int no) {
this.no = no;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public HeroNode getLeft() {
return left;
}
public void setLeft(HeroNode left) {
this.left = left;
}
public HeroNode getRight() {
return right;
}
public void setRight(HeroNode right) {
this.right = right;
}
@Override
public String toString() {
return "HeroNode [no=" + no + ", name=" + name + "]";
}
//前序遍历查找
/**
*
* @param no 查找no
* @return 如果找到就返回该Node ,如果没有找到返回 null
*/
public HeroNode preOrderSearch(int no) {
System.out.println("进入前序遍历");
//比较当前结点是不是
if(this.no == no) {
return this;
}
//1.则判断当前结点的左子节点是否为空,如果不为空,则递归前序查找
//2.如果左递归前序查找,找到结点,则返回
HeroNode resNode = null;
if(this.left != null) {
resNode = this.left.preOrderSearch(no);
}
if(resNode != null) {//说明我们左子树找到
return resNode;
}
//1.左递归前序查找,找到结点,则返回,否继续判断,
//2.当前的结点的右子节点是否为空,如果不空,则继续向右递归前序查找
if(this.right != null) {
resNode = this.right.preOrderSearch(no);
}
return resNode;
} //中序遍历查找
public HeroNode infixOrderSearch(int no) {
//判断当前结点的左子节点是否为空,如果不为空,则递归中序查找
HeroNode resNode = null;
if(this.left != null) {
resNode = this.left.infixOrderSearch(no);
}
if(resNode != null) {
return resNode;
}
System.out.println("进入中序查找");
//如果找到,则返回,如果没有找到,就和当前结点比较,如果是则返回当前结点
if(this.no == no) {
return this;
}
//否则继续进行右递归的中序查找
if(this.right != null) {
resNode = this.right.infixOrderSearch(no);
}
return resNode; } //后序遍历查找
public HeroNode postOrderSearch(int no) { //判断当前结点的左子节点是否为空,如果不为空,则递归后序查找
HeroNode resNode = null;
if(this.left != null) {
resNode = this.left.postOrderSearch(no);
}
if(resNode != null) {//说明在左子树找到
return resNode;
} //如果左子树没有找到,则向右子树递归进行后序遍历查找
if(this.right != null) {
resNode = this.right.postOrderSearch(no);
}
if(resNode != null) {
return resNode;
}
System.out.println("进入后序查找");
//如果左右子树都没有找到,就比较当前结点是不是
if(this.no == no) {
return this;
}
return resNode;
} }
代码
前序遍历方式~~~
进入前序遍历
进入前序遍历
进入前序遍历
进入前序遍历
找到了,信息为 no=5 name=关胜中序遍历方式~~~
进入中序查找
进入中序查找
进入中序查找
找到了,信息为 no=5 name=关胜后序遍历方式~~~
进入后序查找
进入后序查找
找到了,信息为 no=5 name=关胜
输出
二叉树-删除节点
定义:
- 如果删除的节点是叶子节点,则删除该节点
- 如果删除的节点是非叶子节点,则删除该子树.
思路分析:
实现删除代码:
//定义BinaryTree 二叉树
class BinaryTree {
private HeroNode root; public void setRoot(HeroNode root) {
this.root = root;
} //删除结点
public void delNode(int no) {
if(root != null) {
//如果只有一个root结点, 这里立即判断root是不是就是要删除结点
if(root.getNo() == no) {
root = null;
} else {
//递归删除
root.delNode(no);
}
}else{
System.out.println("空树,不能删除~");
}
}
}
class HeroNode {
private int no;
private String name;
private HeroNode left; //默认null
private HeroNode right; //默认null
public HeroNode(int no, String name) {
this.no = no;
this.name = name;
}
public int getNo() {
return no;
}
public void setNo(int no) {
this.no = no;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
public HeroNode getLeft() {
return left;
}
public void setLeft(HeroNode left) {
this.left = left;
}
public HeroNode getRight() {
return right;
}
public void setRight(HeroNode right) {
this.right = right;
}
@Override
public String toString() {
return "HeroNode [no=" + no + ", name=" + name + "]";
}
//递归删除结点
//1.如果删除的节点是叶子节点,则删除该节点
//2.如果删除的节点是非叶子节点,则删除该子树
public void delNode(int no) { //思路
/*
* 1. 因为我们的二叉树是单向的,所以我们是判断当前结点的子结点是否需要删除结点,而不能去判断当前这个结点是不是需要删除结点.
2. 如果当前结点的左子结点不为空,并且左子结点 就是要删除结点,就将this.left = null; 并且就返回(结束递归删除)
3. 如果当前结点的右子结点不为空,并且右子结点 就是要删除结点,就将this.right= null ;并且就返回(结束递归删除)
4. 如果第2和第3步没有删除结点,那么我们就需要向左子树进行递归删除
5. 如果第4步也没有删除结点,则应当向右子树进行递归删除. */
//2. 如果当前结点的左子结点不为空,并且左子结点 就是要删除结点,就将this.left = null; 并且就返回(结束递归删除)
if(this.left != null && this.left.no == no) {
this.left = null;
return;
}
//3.如果当前结点的右子结点不为空,并且右子结点 就是要删除结点,就将this.right= null ;并且就返回(结束递归删除)
if(this.right != null && this.right.no == no) {
this.right = null;
return;
}
//4.我们就需要向左子树进行递归删除
if(this.left != null) {
this.left.delNode(no);
}
//5.则应当向右子树进行递归删除
if(this.right != null) {
this.right.delNode(no);
}
}
}
代码
测试:
public static void main(String[] args) {
//先需要创建一颗二叉树
BinaryTree binaryTree = new BinaryTree();
//创建需要的结点
HeroNode root = new HeroNode(1, "宋江");
HeroNode node2 = new HeroNode(2, "吴用");
HeroNode node3 = new HeroNode(3, "卢俊义");
HeroNode node4 = new HeroNode(4, "林冲");
HeroNode node5 = new HeroNode(5, "关胜"); //说明,我们先手动创建该二叉树,后面我们学习递归的方式创建二叉树
root.setLeft(node2);
root.setRight(node3);
node3.setRight(node4);
node3.setLeft(node5);
binaryTree.setRoot(root);
System.out.println("删除前,前序遍历");
binaryTree.preOrder(); // 1,2,3,5,4
binaryTree.delNode(5);
//binaryTree.delNode(3);
System.out.println("删除后,前序遍历");
binaryTree.preOrder(); // 1,2,3,4
}
输出:
删除前,前序遍历
HeroNode [no=1, name=宋江]
HeroNode [no=2, name=吴用]
HeroNode [no=3, name=卢俊义]
HeroNode [no=5, name=关胜]
HeroNode [no=4, name=林冲]
删除后,前序遍历
HeroNode [no=1, name=宋江]
HeroNode [no=2, name=吴用]
HeroNode [no=3, name=卢俊义]
HeroNode [no=4, name=林冲]
如果是删除binaryTree.delNode(3);
则输出:
删除前,前序遍历
HeroNode [no=1, name=宋江]
HeroNode [no=2, name=吴用]
HeroNode [no=3, name=卢俊义]
HeroNode [no=5, name=关胜]
HeroNode [no=4, name=林冲]
删除后,前序遍历
HeroNode [no=1, name=宋江]
HeroNode [no=2, name=吴用]
代码
拓展:
上面我们定义了两个删除规则,那么我们考虑另外删除规则又怎么实现。‘
如果要删除的节点是非叶子节点,现在我们不希望将该非叶子节点为根节点的子树删除,需要指定规则, 假如规定如下:
- 如果该非叶子节点A只有一个子节点B,则子节点B替代节点A
- 如果该非叶子节点A有左子节点B和右子节点C,则让左子节点B替代节点A。
这个代码实现在后续讲二叉排序树时,在讲解具体的删除方法。
顺序存储二叉树
顺序存储二叉树的概念
基本说明
从数据存储来看,数组存储方式和树 的存储方式可以相互转换,即数组可 以转换成树,树也可以转换成数组, 看示意图。
要求:
- 上图的二叉树的结点,要求以数组的方式来存放 arr : [1, 2, 3, 4, 5, 6, 7]
- 要求在遍历数组 arr时,仍然可以以前序遍历,中序遍历和后序遍历的方式完成结点的遍历
顺序存储二叉树的特点:
- 顺序二叉树通常只考虑完全二叉树
- 第n个元素的左子节点为 2 * n + 1
- 第n个元素的右子节点为 2 * n + 2
- 第n个元素的父节点为 (n-1) / 2
- n : 表示二叉树中的第几个元素
需求: 给你一个数组 {1,2,3,4,5,6,7},要求以二叉树前序遍历的方式进行遍历。 前序遍历的结果应当为 1,2,4,5,3,6,7
public class ArrBinaryTreeDemo { public static void main(String[] args) {
int[] arr = { 1, 2, 3, 4, 5, 6, 7 };
//创建一个 ArrBinaryTree
ArrBinaryTree arrBinaryTree = new ArrBinaryTree(arr);
arrBinaryTree.preOrder(); // 1,2,4,5,3,6,7
} } //编写一个ArrayBinaryTree, 实现顺序存储二叉树遍历 class ArrBinaryTree {
private int[] arr;//存储数据结点的数组 public ArrBinaryTree(int[] arr) {
this.arr = arr;
} //重载preOrder
public void preOrder() {
this.preOrder(0);
} //编写一个方法,完成顺序存储二叉树的前序遍历
/**
*
* @param index 数组的下标
*/
public void preOrder(int index) {
//如果数组为空,或者 arr.length = 0
if(arr == null || arr.length == 0) {
System.out.println("数组为空,不能按照二叉树的前序遍历");
}
//输出当前这个元素
System.out.println(arr[index]);
//向左递归遍历
if((index * 2 + 1) < arr.length) {
preOrder(2 * index + 1 );
}
//向右递归遍历
if((index * 2 + 2) < arr.length) {
preOrder(2 * index + 2);
}
} }
代码
顺序存储二叉树应用实例
八大排序算法中的堆排序,就会使用到顺序存储二叉树, 关于堆排序后续在讲。
数据结构与算法---树结构(Tree structure)的更多相关文章
- 【算法】273-每周一练 之 数据结构与算法(Tree)
这是第六周的练习题,最近加班比较多. 下面是之前分享的链接: [算法]200-每周一练 之 数据结构与算法(Stack) [算法]213-每周一练 之 数据结构与算法(LinkedList) [算法] ...
- 每周一练 之 数据结构与算法(Tree)
这是第六周的练习题,最近加班比较多,上周主要完成一篇 GraphQL入门教程 ,有兴趣的小伙伴可以看下哈. 下面是之前分享的链接: 1.每周一练 之 数据结构与算法(Stack) 2.每周一练 之 数 ...
- Python - 数据结构与算法(Data Structure and Algorithms)
入门 The Algorithms Python https://github.com/TheAlgorithms/Python 从基本原理到代码实现的Python算法入门,简洁地展示问题怎样解决,因 ...
- 数据结构与算法--树(tree)结构
树 二叉树 遍历原则:前序遍历是根左右, 中序遍历是左根右,后序遍历是左右根. 二叉搜索树 特点:对于树中的每个节点X,它的左子树中所有节点的值都小于X,右子树中所有节点的值都大于X. 遍历:采取二叉 ...
- [数据结构]——二叉树(Binary Tree)、二叉搜索树(Binary Search Tree)及其衍生算法
二叉树(Binary Tree)是最简单的树形数据结构,然而却十分精妙.其衍生出各种算法,以致于占据了数据结构的半壁江山.STL中大名顶顶的关联容器--集合(set).映射(map)便是使用二叉树实现 ...
- Java数据结构和算法(二)顺序存储的树结构
Java数据结构和算法(二)顺序存储的树结构 数据结构与算法目录(https://www.cnblogs.com/binarylei/p/10115867.html) 二叉树也可以用数组存储,可以和完 ...
- Java数据结构和算法(三)顺序存储的树结构
Java数据结构和算法(三)顺序存储的树结构 二叉树也可以用数组存储,可以和完全二叉树的节点一一对应. 一.树的遍历 // 二叉树保存在数组中 int[] data; public void preO ...
- Pascal数据结构与算法
第一章 数据结构与算法的引入 1.1 数据结构的基本概念 一. 学习数据结构的意义 程序设计 = 数据结构 + 算法 目前,80%的待处理的数据具有“算法简单”(四则运算.检索.排序等),“对象复杂” ...
- Java 内功修炼 之 数据结构与算法(一)
一.基本认识 1.数据结构与算法的关系? (1)数据结构(data structure): 数据结构指的是 数据与数据 之间的结构关系.比如:数组.队列.哈希.树 等结构. (2)算法: 算法指的是 ...
随机推荐
- linux_crontab_定时删除
#每天2:30 删除4天前qac的原始log30 2 * * * find /home/iknow/ETL/RetlPull/retl-pull/data/qac -name qac.log.new. ...
- Xamarin 设置可接受的版本
一共分三个版本,编译版本.最小版本.目标版本(最适应) 一般编译使用最新的版本,目标版本选择最主流的 参考资料 https://docs.microsoft.com/en-us/xamarin/and ...
- OpenExpressApp:精通 WPF UI Virtualization
原文:OpenExpressApp:精通 WPF UI Virtualization 本篇博客主要说明如何使用 UI Virtualization(以下简称为 UIV) 来提升 OEA 框架中 Tre ...
- 开源数据源使用 DBCP 和 C3PO
jar包: commons-dbcp-1.4.jar commons-pool-1.5.6.jar mysql-connector-java-5.0.8-bin.jar 建立dbcp的配置文件 dbc ...
- ASP FirstWeb
//html <!DOCTYPE html> <html><head><meta http-equiv="Content-Type" co ...
- WM_SIZE后于WM_CREATE消息!!在窗口被创建时的顺序!
WM_SIZE procedure WMSize (var Message: TWMSize); message WM_SIZE; 参数说明 wParam: Specifies the type ...
- vs2017 cordova apk 第一个项目
原文:vs2017 cordova apk 第一个项目 vs出到了2017,终于能正了八经跨平台开发,特别是终于不报一堆错了. cordova是个好东西,终于不用揽一个项目,还要被手机端瓜分大半血汗钱 ...
- JS实时检测文本框内容长度
通过js代码实时监测,文本框内容的变化以及长度,下图是一个实际使用场景. HTML部分: <input id="Text1" type="text" on ...
- iOS 自定义UIButton
工作中有一个点击button更新button上文案的需求,用自定义了button可以很简单的实现的这个需求 首先写个自定义的button CustomButton.h #import <UIKi ...
- Qt打开外部程序和文件夹需要注意的细节(注意QProcess的空格问题,以及打开本地文件时,需要QUrl::fromLocalFile才可以)
下午写程序中遇到几个小细节,需要在这里记录一下. ? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 QProcess *process = new QProcess(this ...