Storm 系列(一)—— Storm和流处理简介
一、Storm
1.1 简介
Storm 是一个开源的分布式实时计算框架,可以以简单、可靠的方式进行大数据流的处理。通常用于实时分析,在线机器学习、持续计算、分布式 RPC、ETL 等场景。Storm 具有以下特点:
- 支持水平横向扩展;
- 具有高容错性,通过 ACK 机制每个消息都不丢失;
- 处理速度非常快,每个节点每秒能处理超过一百万个 tuples ;
- 易于设置和操作,并可以与任何编程语言一起使用;
- 支持本地模式运行,对于开发人员来说非常友好;
- 支持图形化管理界面。
1.2 Storm 与 Hadoop对比
Hadoop 采用 MapReduce 处理数据,而 MapReduce 主要是对数据进行批处理,这使得 Hadoop 更适合于海量数据离线处理的场景。而 Strom 的设计目标是对数据进行实时计算,这使得其更适合实时数据分析的场景。
1.3 Storm 与 Spark Streaming对比
Spark Streaming 并不是真正意义上的流处理框架。 Spark Streaming 接收实时输入的数据流,并将数据拆分为一系列批次,然后进行微批处理。只不过 Spark Streaming 能够将数据流进行极小粒度的拆分,使得其能够得到接近于流处理的效果,但其本质上还是批处理(或微批处理)。

1.4 Strom 与 Flink对比
storm 和 Flink 都是真正意义上的实时计算框架。其对比如下:
storm | flink | |
---|---|---|
状态管理 | 无状态 | 有状态 |
窗口支持 | 对事件窗口支持较弱,缓存整个窗口的所有数据,窗口结束时一起计算 | 窗口支持较为完善,自带一些窗口聚合方法, 并且会自动管理窗口状态 |
消息投递 | At Most Once At Least Once |
At Most Once At Least Once Exactly Once |
容错方式 | ACK 机制:对每个消息进行全链路跟踪,失败或者超时时候进行重发 | 检查点机制:通过分布式一致性快照机制, 对数据流和算子状态进行保存。在发生错误时,使系统能够进行回滚。 |
注 : 对于消息投递,一般有以下三种方案:
- At Most Once : 保证每个消息会被投递 0 次或者 1 次,在这种机制下消息很有可能会丢失;
- At Least Once : 保证了每个消息会被默认投递多次,至少保证有一次被成功接收,信息可能有重复,但是不会丢失;
- Exactly Once : 每个消息对于接收者而言正好被接收一次,保证即不会丢失也不会重复。
二、流处理
2.1 静态数据处理
在流处理之前,数据通常存储在数据库或文件系统中,应用程序根据需要查询或计算数据,这就是传统的静态数据处理架构。Hadoop 采用 HDFS 进行数据存储,采用 MapReduce 进行数据查询或分析,这就是典型的静态数据处理架构。

2.2 流处理
而流处理则是直接对运动中数据的处理,在接收数据的同时直接计算数据。实际上,在真实世界中的大多数数据都是连续的流,如传感器数据,网站用户活动数据,金融交易数据等等 ,所有这些数据都是随着时间的推移而源源不断地产生。
接收和发送数据流并执行应用程序或分析逻辑的系统称为流处理器。流处理器的基本职责是确保数据有效流动,同时具备可扩展性和容错能力,Storm 和 Flink 就是其代表性的实现。

流处理带来了很多优点:
可以立即对数据做出反应:降低了数据的滞后性,使得数据更具有时效性,更能反映对未来的预期;
可以处理更大的数据量:直接处理数据流,并且只保留数据中有意义的子集,然后将其传送到下一个处理单元,通过逐级过滤数据,从而降低实际需要处理的数据量;
更贴近现实的数据模型:在实际的环境中,一切数据都是持续变化的,想要通过历史数据推断未来的趋势,必须保证数据的不断输入和模型的持续修正,典型的就是金融市场、股票市场,流处理能更好地处理这些场景下对数据连续性和及时性的需求;
分散和分离基础设施:流式处理减少了对大型数据库的需求。每个流处理程序通过流处理框架维护了自己的数据和状态,这使其更适合于当下最流行的微服务架构。
参考资料
更多大数据系列文章可以参见 GitHub 开源项目: 大数据入门指南
Storm 系列(一)—— Storm和流处理简介的更多相关文章
- Storm系列一: Storm初步
初入Storm 前言 学习Storm已经有两周左右的时间,但是认真来说学习过程确实是零零散散,遇到问题去百度一下,找到新概念再次学习,在这样的一个循环又不成体系的过程中不断学习Storm. 前人栽树, ...
- Storm系列之一——Storm Topology并发
1.是什么构成一个可运行的topology? worker processes(worker进程),executors(线程)和tasks. 一台Storm集群里面的机器可能运行一个或多个worker ...
- Storm概念学习系列之Stream消息流 和 Stream Grouping 消息流组
不多说,直接上干货! Stream消息流是Storm中最关键的抽象,是一个没有边界的Tuple序列. Stream Grouping 消息流组是用来定义一个流如何分配到Tuple到Bolt. Stre ...
- Storm 系列(二)实时平台介绍
Storm 系列(二)实时平台介绍 本章中的实时平台是指针对大数据进行实时分析的一整套系统,包括数据的收集.处理.存储等.一般而言,大数据有 4 个特点: Volumn(大量). Velocity(高 ...
- Storm 系列(五)—— Storm 编程模型详解
一.简介 下图为 Strom 的运行流程图,在开发 Storm 流处理程序时,我们需要采用内置或自定义实现 spout(数据源) 和 bolt(处理单元),并通过 TopologyBuilder 将它 ...
- Storm:最火的流式处理框架
伴随着信息科技日新月异的发展,信息呈现出爆发式的膨胀,人们获取信息的途径也更加多样.更加便捷,同时对于信息的时效性要求也越来越高.举个搜索场景中的例子,当一个卖家发布了一条宝贝信息时,他希望的当然是这 ...
- Storm 系列(一)基本概念
Storm 系列(一)基本概念 Apache Storm(http://storm.apache.org/)是由 Twitter 开源的分布式实时计算系统. Storm 可以非常容易并且可靠地处理无限 ...
- Storm系列三: Storm消息可靠性保障
Storm系列三: Storm消息可靠性保障 在上一篇 Storm系列二: Storm拓扑设计 中我们已经设计了一个稍微复杂一点的拓扑. 而本篇就是在上一篇的基础上再做出一定的调整. 在这里先大概提一 ...
- Storm系列二: Storm拓扑设计
Storm系列二: Storm拓扑设计 在本篇中,我们就来根据一个案例,看看如何去设计一个拓扑, 如何分解问题以适应Storm架构,同时对Storm拓扑内部的并行机制会有一个基本的了解. 本章代码都在 ...
- Storm编程入门API系列之Storm的Topology的stream grouping
概念,见博客 Storm概念学习系列之stream grouping(流分组) Storm的stream grouping的Shuffle Grouping 它是随机分组,随机派发stream里面的t ...
随机推荐
- [译]使用golang每分钟处理百万请求
[译]使用golang每分钟处理百万请求 在Malwarebytes,我们正在经历惊人的增长,自从我在1年前加入硅谷的这家公司以来,我的主要职责是为多个系统做架构和开发,为这家安全公司的快速发展以及百 ...
- Pandas 库之 DataFrame
How to use DataFrame ? 简介 创建 DataFrame 查看与筛选数据:行列选取 DataFrame 数据操作:增删改 一.About DataFrame DataFrame 是 ...
- 通过Blazor使用C#开发SPA单页面应用程序(2)
今天我们尝试创建一个默认的Blazor应用. 1.安装 .Net Core 3.0需要Visual Studio 2019 的支持. 安装.Net Core 3.0 预览版 SDK版本,注意预览版对应 ...
- RedHat 6.5换源
https://wenku.baidu.com/view/5b87fb42c77da26924c5b03b.html
- nginx对特定参数限流
接到一个需求, 需要对请求(GET)里面的某个参数 的特定的值, 进行限流; 因为不限流的话, 不知道什么时候这个id的请求飙一下, 服务端就被压死了... 就像这样: /index.html?id ...
- 使用.Net Core + Vue + IdentityServer4 + Ocelot 实现一个简单的DEMO +源码
运行环境 Vue 使用的是D2admin: https://doc.d2admin.fairyever.com/zh/ Github地址:https://github.com/Fengddd/Perm ...
- 服务注册发现、配置中心集一体的 Spring Cloud Consul
前面讲了 Eureka 和 Spring Cloud Config,今天介绍一个全能选手 「Consul」.它是 HashiCorp 公司推出,用于提供服务发现和服务配置的工具.用 go 语言开发,具 ...
- 随笔编号-15 重构--改善既有代码的设计--Day01--学习笔记
最近公司开发的系统在进行大批量数据查询的时候发现响应速度变得让人无法忍受,so 老大安排我进行代码重构的工作,主要目的就是为提高代码的执行效率.减小方法之间的响应时间.降低方法之间的耦合度.= =! ...
- Python--高阶函数、函数嵌套、名称空间及变量作用域、闭包、装饰器
1.高阶函数(map/reduce/filter) 高阶函数是指函数的参数可以是函数 这篇总结几个常用的高阶函数:map/reduce/filter map函数.reduce函数.filter函数都是 ...
- 小米 OJ 编程比赛 02 月常规赛 3 Logic Gatekeeper CDQ分治
link:https://code.mi.com/problem/list/view?id=139 题意: 有一个1e6 * 1e6 大的格子,现在有两种操作:1,给一个子矩阵中的每个格子加上k.2, ...