题目链接:http://codeforces.com/contest/816/problem/E

题意:有n件商品,每件有价格ci,优惠券di,对于i>=2,使用di的条件为:xi的优惠券需要被使用,问初始金钱为b时 最多能买多少件商品? n<=5000,ci,di,b<=1e9

题解:显然是一道树形dp由于有两种情况就是当前点为根结点的时候选择打折还是不打折,如果选不打折之后的节点都不能打折。

不妨设dp[i][j][flag]表示i为根j为种类数,flag为状态表示选不选打折的最小花费。转移方程为

dp[u][j + l][0] = min(dp[u][j + l][0] , dp[u][j][0] + dp[v][l][0]);

dp[u][j + l][1] = min(dp[u][j + l][1] , min(dp[u][j][1] + dp[v][l][0] , dp[u][j][1] + dp[v][l][1]));

具体看代码。

#include <iostream>
#include <cstring>
#include <vector>
#define inf 0X3f3f3f3f
using namespace std;
typedef long long ll;
const int M = 5e3 + 10;
vector<int>vc[M];
ll pa[M] , pb[M] , dp[M][M][2] , sz[M];
void dfs(int u) {
int len = vc[u].size();
sz[u] = 1;
dp[u][0][0] = 0 , dp[u][1][0] = pa[u] , dp[u][1][1] = pa[u] - pb[u];
for(int i = 0 ; i < len ; i++) {
int v = vc[u][i];
dfs(v);
for(ll j = sz[u] ; j >= 0 ; j--) {
for(ll l = 0 ; l <= sz[v] ; l++) {
dp[u][j + l][0] = min(dp[u][j + l][0] , dp[u][j][0] + dp[v][l][0]);
dp[u][j + l][1] = min(dp[u][j + l][1] , min(dp[u][j][1] + dp[v][l][0] , dp[u][j][1] + dp[v][l][1]));
}
}
sz[u] += sz[v];
}//这里看似是3个for实际上就是3个for但是复杂度却不是O(n^3),由于sz[i]表示的是以i为根的最多有几个子节点类似前缀的一种东西,由于dfs,这些sz只会用一次不会有重复。所以理论上复杂度就是O(n^2)。
}
int main() {
int n , b;
scanf("%d%d" , &n , &b);
for(int i = 1 ; i <= n ; i++) {
int c , d , x;
if(i == 1) {
scanf("%d%d" , &c , &d);
pa[i] = c , pb[i] = d;
}
else {
scanf("%d%d%d" , &c , &d , &x);
pa[i] = c , pb[i] = d;
vc[x].push_back(i);
}
}
memset(dp , inf , sizeof(dp));
dfs(1);
int ans = 0;
for(int i = 0 ; i <= n ; i++) {
if(dp[1][i][0] <= b || dp[1][i][1] <= b) ans = i;
}
printf("%d\n" , ans);
return 0;
}

codeforces 816 E. Karen and Supermarket(树形dp)的更多相关文章

  1. Codeforces 815C Karen and Supermarket 树形dp

    Karen and Supermarket 感觉就是很普通的树形dp. dp[ i ][ 0 ][ u ]表示在 i 这棵子树中选择 u 个且 i 不用优惠券的最小花费. dp[ i ][ 1 ][ ...

  2. Codeforces Round #419 (Div. 1) C. Karen and Supermarket 树形DP

    C. Karen and Supermarket     On the way home, Karen decided to stop by the supermarket to buy some g ...

  3. CF815C Karen and Supermarket [树形DP]

    题目传送门 Karen and Supermarket On the way home, Karen decided to stop by the supermarket to buy some gr ...

  4. 816E. Karen and Supermarket 树形DP

    LINK 题意:给出n个商品,除第一个商品外,所有商品可以选择使用优惠券,但要求其前驱商品已被购买,问消费k以下能买几个不同的商品 思路:题意很明显就是树形DP.对于一个商品有三种选择,买且使用优惠券 ...

  5. [CF816E] Karen and Supermarket1 [树形dp]

    传送门 - > \(CF816E\) Karen and Supermarket 题意翻译 在回家的路上,凯伦决定到超市停下来买一些杂货. 她需要买很多东西,但因为她是学生,所以她的预算仍然很有 ...

  6. Codeforces 219D - Choosing Capital for Treeland(树形dp)

    http://codeforces.com/problemset/problem/219/D 题意 给一颗树但边是单向边,求至少旋转多少条单向边的方向,可以使得树上有一点可以到达树上任意一点,若有多个 ...

  7. codeforces 633F The Chocolate Spree (树形dp)

    题目链接:http://codeforces.com/problemset/problem/633/F 题解:看起来很像是树形dp其实就是单纯的树上递归,就是挺难想到的. 显然要求最优解肯定是取最大的 ...

  8. codeforces 486 D. Valid Sets(树形dp)

    题目链接:http://codeforces.com/contest/486/problem/D 题意:给出n个点,还有n-1条边的信息,问这些点共能构成几棵满足要求的树,构成树的条件是. 1)首先这 ...

  9. Codeforces 418d Big Problems for Organizers [树形dp][倍增lca]

    题意: 给你一棵有n个节点的树,树的边权都是1. 有m次询问,每次询问输出树上所有节点离其较近结点距离的最大值. 思路: 1.首先是按照常规树形dp的思路维护一个子树节点中距离该点的最大值son_di ...

随机推荐

  1. python中对多态的理解

    目录 python中对多态的理解 一.多态 二.多态性 三.鸭子类型 python中对多态的理解 一.多态 多态是指一类事物有多种形态,比如动物类,可以有猫,狗,猪等等.(一个抽象类有多个子类,因而多 ...

  2. xpath beautiful pyquery三种解析库

    这两天看了一下python常用的三种解析库,写篇随笔,整理一下思路.太菜了,若有错误的地方,欢迎大家随时指正.......(conme on.......) 爬取网页数据一般会经过 获取信息-> ...

  3. 【Java例题】7.3 线程题3-素数线程

    3.素数线程.设计一个线程子类,依次随机产生10000个随机整数(100-999):再设计另一个线程子类,依次对每一个随机整数判断是不是素数,是则显示:然后编写主类,在主函数中定义这两个线程类的线程对 ...

  4. 使用阿里云oss

    写这篇博文的原因是公司有个项目需要用到阿里云来存放用户头像文件.后期软件安装版本也可能需要存进去,然后折腾了两天终于摸熟了一点皮毛,在这里给大家简单介绍下. 一.初识对象存储oss 1.进入阿里云控制 ...

  5. [NUnit] discover test finished: 0 found issue

    %Temp%\VisualStudioTestExplorerExtensions & restart visual studio

  6. UML类图(1.3)

    UML:Unified modeling Language 统一建模语言 UML类图:用来描述系统所包含的类以及类之间的关系. 画图工具:https://www.processon.com 类之间的6 ...

  7. 基于jmeter+perfmon的稳定性测试记录

    1. 引子 最近承接了项目中一些性能测试的任务,因此决定记录一下,将测试的过程和一些心得收录下来. 说起来性能测试算是软件测试行业内,有些特殊的部分.这部分的测试活动,与传统的测试任务差别是比较大的, ...

  8. cs224d---词向量表示

    1 Word meaning 1. 1 word meaning的两种定义 Definition meaning:单词的含义指代了客观存在的具体事物,如眼镜. Distributional simil ...

  9. vSphere Web Client 监控 esxi 主机硬件状态

    开启插件能对 vcenter 管理的 esxi 主机的硬件状态进行监控. 以下操作均在 vcenter 主机上操作. 0x00 修改配置 文档中关于启用脚本插件支持的说明: Enabling Scri ...

  10. 如何删除GIT仓库中的敏感信息

    如何删除GIT仓库中的敏感信息 正常Git仓库中应该尽量不包含数据库连接/AWS帐号/巨大二进制文件,否则一旦泄漏到Github,这些非常敏感信息会影响客户的信息安全已经公司的信誉.公司可能其它还有相 ...