codeforces 816 E. Karen and Supermarket(树形dp)
题目链接:http://codeforces.com/contest/816/problem/E
题意:有n件商品,每件有价格ci,优惠券di,对于i>=2,使用di的条件为:xi的优惠券需要被使用,问初始金钱为b时 最多能买多少件商品? n<=5000,ci,di,b<=1e9
题解:显然是一道树形dp由于有两种情况就是当前点为根结点的时候选择打折还是不打折,如果选不打折之后的节点都不能打折。
不妨设dp[i][j][flag]表示i为根j为种类数,flag为状态表示选不选打折的最小花费。转移方程为
dp[u][j + l][0] = min(dp[u][j + l][0] , dp[u][j][0] + dp[v][l][0]);
dp[u][j + l][1] = min(dp[u][j + l][1] , min(dp[u][j][1] + dp[v][l][0] , dp[u][j][1] + dp[v][l][1]));
具体看代码。
#include <iostream>
#include <cstring>
#include <vector>
#define inf 0X3f3f3f3f
using namespace std;
typedef long long ll;
const int M = 5e3 + 10;
vector<int>vc[M];
ll pa[M] , pb[M] , dp[M][M][2] , sz[M];
void dfs(int u) {
int len = vc[u].size();
sz[u] = 1;
dp[u][0][0] = 0 , dp[u][1][0] = pa[u] , dp[u][1][1] = pa[u] - pb[u];
for(int i = 0 ; i < len ; i++) {
int v = vc[u][i];
dfs(v);
for(ll j = sz[u] ; j >= 0 ; j--) {
for(ll l = 0 ; l <= sz[v] ; l++) {
dp[u][j + l][0] = min(dp[u][j + l][0] , dp[u][j][0] + dp[v][l][0]);
dp[u][j + l][1] = min(dp[u][j + l][1] , min(dp[u][j][1] + dp[v][l][0] , dp[u][j][1] + dp[v][l][1]));
}
}
sz[u] += sz[v];
}//这里看似是3个for实际上就是3个for但是复杂度却不是O(n^3),由于sz[i]表示的是以i为根的最多有几个子节点类似前缀的一种东西,由于dfs,这些sz只会用一次不会有重复。所以理论上复杂度就是O(n^2)。
}
int main() {
int n , b;
scanf("%d%d" , &n , &b);
for(int i = 1 ; i <= n ; i++) {
int c , d , x;
if(i == 1) {
scanf("%d%d" , &c , &d);
pa[i] = c , pb[i] = d;
}
else {
scanf("%d%d%d" , &c , &d , &x);
pa[i] = c , pb[i] = d;
vc[x].push_back(i);
}
}
memset(dp , inf , sizeof(dp));
dfs(1);
int ans = 0;
for(int i = 0 ; i <= n ; i++) {
if(dp[1][i][0] <= b || dp[1][i][1] <= b) ans = i;
}
printf("%d\n" , ans);
return 0;
}
codeforces 816 E. Karen and Supermarket(树形dp)的更多相关文章
- Codeforces 815C Karen and Supermarket 树形dp
Karen and Supermarket 感觉就是很普通的树形dp. dp[ i ][ 0 ][ u ]表示在 i 这棵子树中选择 u 个且 i 不用优惠券的最小花费. dp[ i ][ 1 ][ ...
- Codeforces Round #419 (Div. 1) C. Karen and Supermarket 树形DP
C. Karen and Supermarket On the way home, Karen decided to stop by the supermarket to buy some g ...
- CF815C Karen and Supermarket [树形DP]
题目传送门 Karen and Supermarket On the way home, Karen decided to stop by the supermarket to buy some gr ...
- 816E. Karen and Supermarket 树形DP
LINK 题意:给出n个商品,除第一个商品外,所有商品可以选择使用优惠券,但要求其前驱商品已被购买,问消费k以下能买几个不同的商品 思路:题意很明显就是树形DP.对于一个商品有三种选择,买且使用优惠券 ...
- [CF816E] Karen and Supermarket1 [树形dp]
传送门 - > \(CF816E\) Karen and Supermarket 题意翻译 在回家的路上,凯伦决定到超市停下来买一些杂货. 她需要买很多东西,但因为她是学生,所以她的预算仍然很有 ...
- Codeforces 219D - Choosing Capital for Treeland(树形dp)
http://codeforces.com/problemset/problem/219/D 题意 给一颗树但边是单向边,求至少旋转多少条单向边的方向,可以使得树上有一点可以到达树上任意一点,若有多个 ...
- codeforces 633F The Chocolate Spree (树形dp)
题目链接:http://codeforces.com/problemset/problem/633/F 题解:看起来很像是树形dp其实就是单纯的树上递归,就是挺难想到的. 显然要求最优解肯定是取最大的 ...
- codeforces 486 D. Valid Sets(树形dp)
题目链接:http://codeforces.com/contest/486/problem/D 题意:给出n个点,还有n-1条边的信息,问这些点共能构成几棵满足要求的树,构成树的条件是. 1)首先这 ...
- Codeforces 418d Big Problems for Organizers [树形dp][倍增lca]
题意: 给你一棵有n个节点的树,树的边权都是1. 有m次询问,每次询问输出树上所有节点离其较近结点距离的最大值. 思路: 1.首先是按照常规树形dp的思路维护一个子树节点中距离该点的最大值son_di ...
随机推荐
- cesium学习——cesium中的坐标
一.坐标展现形式 在cesium中,对于坐标数值单位有三种:角度.弧度和坐标值 1.角度 角度就是我们所熟悉的经纬度,对于地球的坐标建立如下: 图中以本初子午线作为x和z的面,建立了一个空间坐标系.可 ...
- 林大妈的JavaScript基础知识(三):JavaScript编程(4)数组
数组,是一段线性分配的,具有非常高性能的数据结构.简单地说,数组以连续的空间存储,通过整数地计算偏移量访问其中的元素,将读取修改的时间复杂度降低至O(1),我们称之为猝发式存取.是不是非常期待?没错, ...
- MemCached的telnet命令行参数
1.启动Memcache 常用参数 -p <num> 设置TCP端口号(默认不设置为: 11211) -U <num> UDP监听端口(默认: 11211, ...
- Java性能权威指南读书笔记--之二
新生代填满时,垃圾收集器会暂停所有的应用线程,回收新生代空间.这种操作被称为Minor GC. 老年代被填满时,垃圾收集器会暂停所有应用线程,对其进行回收,接着对堆空间进行整理.这个过程被称为Full ...
- 网站安装SSL证书成为影响SEO排名的重要因素之一
百度谷歌先后发声明倡导站长们使用https链接,同样的网站,https站点要比http站点拥有更好的排名权重.https已经是网站SEO必须要考虑的环节之一了,而https的必要条件就是安装SSL证书 ...
- wpf界面按钮自动点击
Button Button = new Button();Button.RaiseEvent(new RoutedEventArgs(Button.ClickEvent));//在按钮生成时便会自动触 ...
- django drf框架中的user验证以及JWT拓展的介绍
登录注册是几乎所有网站都需要去做的接口,而说到登录,自然也就涉及到验证以及用户登录状态保存,最近用DRF在做的一个关于网上商城的项目中,引入了一个拓展DRF JWT,专门用于做验证和用户状态保存.这个 ...
- Flink 源码解析 —— Standalone Session Cluster 启动流程深度分析之 Job Manager 启动
Job Manager 启动 https://t.zsxq.com/AurR3rN 博客 1.Flink 从0到1学习 -- Apache Flink 介绍 2.Flink 从0到1学习 -- Mac ...
- 利用递归,反射,注解等,手写Spring Ioc和Di 底层(分分钟喷倒面试官)了解一下
再我们现在项目中Spring框架是目前各大公司必不可少的技术,而大家都知道去怎么使用Spring ,但是有很多人都不知道SpringIoc底层是如何工作的,而一个开发人员知道他的源码,底层工作原理,对 ...
- 学会了这些技术,你离BAT大厂不远了
每一个程序员都有一个梦想,梦想着能够进入阿里.腾讯.字节跳动.百度等一线互联网公司,由于身边的环境等原因,不知道 BAT 等一线互联网公司使用哪些技术?或者该如何去学习这些技术?或者我该去哪些获取这些 ...