2018中国大学生程序设计竞赛 - 网络选拔赛 hdu 6440 Dream 模拟
Dream
Time Limit: 12000/6000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 1014 Accepted Submission(s): 200
Special Judge
For instance, (1+4)2=52=25, but 12+42=17≠25. Moreover, 9+16−−−−−√=25−−√=5, which does not equal 3+4=7.
Fortunately, in some cases when p is a prime, the identity
holds true for every pair of non-negative integers m,n which are less than p, with appropriate definitions of addition and multiplication.
You are required to redefine the rules of addition and multiplication so as to make the beginner's dream realized.
Specifically, you need to create your custom addition and multiplication, so that when making calculation with your rules the equation (m+n)p=mp+np is a valid identity for all non-negative integers m,n less than p. Power is defined as
Obviously there exists an extremely simple solution that makes all operation just produce zero. So an extra constraint should be satisfied that there exists an integer q(0<q<p) to make the set {qk|0<k<p,k∈Z} equal to {k|0<k<p,k∈Z}. What's more, the set of non-negative integers less than p ought to be closed under the operation of your definitions.
Hint for sample input and output:
From the table we get 0+1=1, and thus (0+1)2=12=1⋅1=1. On the other hand, 02=0⋅0=0, 12=1⋅1=1, 02+12=0+1=1.
They are the same.
For every case, there is only one line contains an integer p(p<210), described in the problem description above. p is guranteed to be a prime.
The j-th(1≤j≤p) integer of i-th(1≤i≤p) line denotes the value of (i−1)+(j−1). The j-th(1≤j≤p) integer of (p+i)-th(1≤i≤p) line denotes the value of (i−1)⋅(j−1).
2
1 0
0 0
0 1
#include <map>
#include <set>
#include <stack>
#include <cmath>
#include <queue>
#include <cstdio>
#include <vector>
#include <string>
#include <bitset>
#include <cstring>
#include <iomanip>
#include <iostream>
#include <algorithm>
#define ls (r<<1)
#define rs (r<<1|1)
#define debug(a) cout << #a << " " << a << endl
using namespace std;
typedef long long ll;
const ll maxn = pow(2,10)+10;
const double eps = 1e-8;
const ll mod = 1e9 + 7;
const ll inf = 1e9;
const double pi = acos(-1.0);
ll mapn[2*maxn][maxn];
int main() {
ll T, p;
scanf("%lld",&T);
while(T--) {
memset(mapn,0,sizeof(mapn));
scanf("%lld",&p);
for( ll i = 1; i <= 2*p; i ++ ) {
for( ll j = 1; j <= p; j ++ ) {
if( i <= p ) {
mapn[i][j] = ((i-1)+(j-1))%p;
} else {
mapn[i][j] = (i-1)*(j-1)%p;
}
if( j != p ) {
printf("%lld ",mapn[i][j]);
} else {
printf("%lld\n",mapn[i][j]);
}
}
}
}
return 0;
}
2018中国大学生程序设计竞赛 - 网络选拔赛 hdu 6440 Dream 模拟的更多相关文章
- 2018中国大学生程序设计竞赛 - 网络选拔赛 hdu Tree and Permutation 找规律+求任意两点的最短路
Tree and Permutation Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Oth ...
- 2018中国大学生程序设计竞赛 - 网络选拔赛 hdu Find Integer 数论
Find Integer Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Tota ...
- 2018中国大学生程序设计竞赛 - 网络选拔赛 1001 - Buy and Resell 【优先队列维护最小堆+贪心】
题目传送门:http://acm.hdu.edu.cn/showproblem.php?pid=6438 Buy and Resell Time Limit: 2000/1000 MS (Java/O ...
- 2018中国大学生程序设计竞赛 - 网络选拔赛 1010 YJJ's Salesman 【离散化+树状数组维护区间最大值】
题目传送门:http://acm.hdu.edu.cn/showproblem.php?pid=6447 YJJ's Salesman Time Limit: 4000/2000 MS (Java/O ...
- 2018中国大学生程序设计竞赛 - 网络选拔赛 1009 - Tree and Permutation 【dfs+树上两点距离和】
Tree and Permutation Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Oth ...
- HDU - 6440 Dream 2018中国大学生程序设计竞赛 - 网络选拔赛
给定的\(p\)是素数,要求给定一个加法运算表和乘法运算表,使\((m+n)^p = m^p +n^p(0 \leq m,n < p)\). 因为给定的p是素数,根据费马小定理得 \((m+n) ...
- 2017中国大学生程序设计竞赛 - 网络选拔赛 HDU 6155 Subsequence Count 矩阵快速幂
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6155 题意: 题解来自:http://www.cnblogs.com/iRedBean/p/73982 ...
- 2018中国大学生程序设计竞赛 - 网络选拔赛 Dream hdu6440 Dream 给出一个(流氓)构造法
http://acm.hdu.edu.cn/showproblem.php?pid=6440 题意:让你重新定义任意一对数的乘法和加法结果(输出乘法口诀表和加法口诀表),使得m^p+n^p==(m+n ...
- 2017中国大学生程序设计竞赛 - 网络选拔赛 HDU 6152 Friend-Graph(暴力搜索)
题目传送:http://acm.hdu.edu.cn/showproblem.php?pid=6152 Problem Description It is well known that small ...
随机推荐
- 警惕!CAF效应导致PCB漏电
最近碰到一个PCB漏电的问题,起因是一款低功耗产品,本来整机uA级别的电流,常温老化使用了一段时间后发现其功耗上升,个别样机功耗甚至达到了mA级别.仔细排除了元器件问题,最终发现了一个5V电压点,在产 ...
- 优雅的对象转换解决方案-MapStruct及其入门(一)
第一次看到 MapStruct 的时候, 我个人非常的开心. 因为其跟我内心里面的想法不谋而合. 1 MapStruct 是什么? 1.1 JavaBean 的困扰 对于代码中 JavaBean之间的 ...
- CEPH RGW多 ZONE的配置
相关的名称解释 Region :可以理解为区域,是基于地理位置的逻辑划分:如:华南,华北之类,包含多个region的Ceph集群必须指定一个master region,一个region可以包含一个或者 ...
- 在docker中开启新的container
当你在启动某个容器类型的时候 如果产生了类似的错误: docker: Error: No such image: b27f5dfcfc70c16d7b135889460def6b3f831bcc72 ...
- mac 下 docker 镜像加速器
配置镜像加速器 具体设置见下图即可. 
- redhat linux 5.3安装activeMQ
安装环境:linux redhat enterprise 5.3 activemq版本:5.9.01.从http://activemq.apache.org/download.html地址下载apac ...
- Java虚拟机——Java内存区域
1.运行时区域 Java虚拟机在执行Java程序的时候会把它管理的内厝划分为若干个不同功能的数据区域,如图所示 首先是程序计数器,程序计数器可以理解为当前程序执行的字节码的行号指示器,计数器中的数据即 ...
- 简易数据分析 10 | Web Scraper 翻页——抓取「滚动加载」类型网页
这是简易数据分析系列的第 10 篇文章. 友情提示:这一篇文章的内容较多,信息量比较大,希望大家学习的时候多看几遍. 我们在刷朋友圈刷微博的时候,总会强调一个『刷』字,因为看动态的时候,当把内容拉到屏 ...
- java高并发系列 - 第25天:掌握JUC中的阻塞队列
这是java高并发系列第25篇文章. 环境:jdk1.8. 本文内容 掌握Queue.BlockingQueue接口中常用的方法 介绍6中阻塞队列,及相关场景示例 重点掌握4种常用的阻塞队列 Queu ...
- 7.18 collection time random os sys 序列化 subprocess 等模块
collection模块 namedtuple 具名元组(重要) 应用场景1 # 具名元组 # 想表示坐标点x为1 y为2 z为5的坐标 from collections import namedtu ...