Problem F. Grab The Tree

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 524288/524288 K (Java/Others)

Total Submission(s): 2004    Accepted Submission(s): 911

Problem Description

Little Q and Little T are playing a game on a tree. There are n vertices on the tree, labeled by 1,2,...,n, connected by n−1 bidirectional edges. The i-th vertex has the value of wi.

In this game, Little Q needs to grab some vertices on the tree. He can select any number of vertices to grab, but he is not allowed to grab both vertices that are adjacent on the tree. That is, if there is an edge between x and y, he can't grab both x and y. After Q's move, Little T will grab all of the rest vertices. So when the game finishes, every vertex will be occupied by either Q or T.

The final score of each player is the bitwise XOR sum of his choosen vertices' value. The one who has the higher score will win the game. It is also possible for the game to end in a draw. Assume they all will play optimally, please write a program to predict the result.

Input

The first line of the input contains an integer T(1≤T≤20), denoting the number of test cases.

In each test case, there is one integer n(1≤n≤100000) in the first line, denoting the number of vertices.

In the next line, there are n integers w1,w2,...,wn(1≤wi≤109), denoting the value of each vertex.

For the next n−1 lines, each line contains two integers u and v, denoting a bidirectional edge between vertex u and v.

Output

For each test case, print a single line containing a word, denoting the result. If Q wins, please print Q. If T wins, please print T. And if the game ends in a draw, please print D.

Sample Input

1

3

2 2 2

1 2

1 3

Sample Output

Q

#include <bits/stdc++.h>
#define ios1 ios::sync_with_stdio(0);
#define ios2 cin.tie(0);
#define LL long long
using namespace std;
const int maxn = 1e6 + 10;
int w[maxn]; int main() {
int T, n;
scanf("%d", &T);
while(T--) {
scanf("%d", &n);
int u, v, p = -1;
int Max = -1;
for(int i = 1; i <= n; i++) {
scanf("%d", &w[i]);
if(Max < w[i]) {
Max = w[i];
p = i;
}
}
for(int i = 1; i <= n-1; i++)scanf("%d%d", &u, &v);
int r = 0;
for(int i = 1; i <= n; i++) {
if(i != p)r ^= w[i];
}
if(r == Max) printf("D\n");
else printf("Q\n");
}
return 0;
}

Problem D. Euler Function

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 524288/524288 K (Java/Others)

Total Submission(s): 1474    Accepted Submission(s): 1062

Problem Description

In number theory, Euler's totient function φ(n) counts the positive integers up to a given integer n that are relatively prime to n. It can be defined more formally as the number of integers k in the range 1≤kn for which the greatest common divisor gcd(n,k) is equal to 1.

For example, φ(9)=6 because 1,2,4,5,7 and 8 are coprime with 9. As another example, φ(1)=1 since for n=1 the only integer in the range from 1 to n is 1itself, and gcd(1,1)=1.

A composite number is a positive integer that can be formed by multiplying together two smaller positive integers. Equivalently, it is a positive integer that has at least one divisor other than 1 and itself. So obviously 1 and all prime numbers are not composite number.

In this problem, given integer k, your task is to find the k-th smallest positive integer n, that φ(n) is a composite number.

Input

The first line of the input contains an integer T(1≤T≤100000), denoting the number of test cases.

In each test case, there is only one integer k(1≤k≤109).

Output

For each test case, print a single line containing an integer, denoting the answer.

Sample Input

2

1

2

Sample Output

5

7

题意:给出一个复合数的定义,相当于就是合数, 求第k个最小正整数n, 并且使φ(n)为复合数.

题解:知道欧拉函数的,一下就能发现只有当k == 1时,n == 5, 其他的在 n >= 7之后的数都为复合数.

#include<bits/stdc++.h>
using namespace std; int main() {
int T, k;
scanf("%d", &T);
while(T--) {
scanf("%d", &k);
if(k == 1) printf("5\n");
else printf("%d\n", k + 5);
}
return 0;
}

2018 Multi-University Training Contest 3(部分题解)的更多相关文章

  1. 2018 Multi-University Training Contest 2(部分题解)

    Game Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submi ...

  2. 2018 Multi-University Training Contest 1(部分题解)

    Maximum Multiple Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  3. 2018 Multi-University Training Contest - Team 1 题解

    Solved A HDU 6298 Maximum Multiple Solved B HDU 6299 Balanced Sequence Solved C HDU 6300 Triangle Pa ...

  4. 2018 Nowcoder Multi-University Training Contest 2

    目录 Contest Info Solutions A. run D. monrey G. transform H. travel I. car J. farm Contest Info Practi ...

  5. 2016 Multi-University Training Contest 3 部分题解

    1001,只要枚举区间即可.签到题,要注意的是输入0的话也是“TAT”.不过今天补题的时候却WA了好几次,觉得奇怪.原来出现在判断条件那里,x是一个int64类型的变量,在进行(x<65536* ...

  6. 2016 Multi-University Training Contest 1 部分题解

    第一场多校,出了一题,,没有挂零还算欣慰. 1001,求最小生成树和,确定了最小生成树后任意两点间的距离的最小数学期望.当时就有点矛盾,为什么是求最小的数学期望以及为什么题目给了每条边都不相等的条件. ...

  7. 2016 Multi-University Training Contest 4 部分题解

    1001,官方题解是直接dp,首先dp[i]表示到i位置的种类数,它首先应该等于dp[i-1],(假设m是B串的长度)同时,如果(i-m+1)这个位置开始到i这个位置的这一串是和B串相同的,那么dp[ ...

  8. 2018 Nowcoder Multi-University Training Contest 1

    Practice Link J. Different Integers 题意: 给出\(n\)个数,每次询问\((l_i, r_i)\),表示\(a_1, \cdots, a_i, a_j, \cdo ...

  9. 2018 Nowcoder Multi-University Training Contest 5

    Practice Link A. gpa 题意: 有\(n\)门课程,每门课程的学分为\(s_i\),绩点为\(c_i\),要求最多删除\(k\)门课程,使得gpa最高. gpa计算方式如下: \[ ...

随机推荐

  1. MySQL-5.7.21非图形化下载、安装、连接问题记录

    1.安装包下载链接:https://cdn.mysql.com//Downloads/MySQL-5.7/mysql-5.7.21-winx64.zip 官网:https://www.mysql.co ...

  2. FutrueTask原理及源码分析

    1.前言 相信很多人了解到FutureTask是因为ThreadPoolExecutor.submit方法,根据ThreadPoolExecutor.submit的使用,我们可以先猜一下FutureT ...

  3. 使用sar进行性能分析

    sar可用于监控Linux系统性能,帮助我们分析性能瓶颈.sar工具的使用方式为”sar [选项] intervar [count]”,其中interval为统计信息采样时间,count为采样次数. ...

  4. java集合类的相关转换

    下面的的案例,基本上是以代码为主,文字的描述较少,后期有时间会继续添加. ArrayToList public void ArrayToList() { System.out.println(&quo ...

  5. (六)c#Winform自定义控件-单选框

    前提 入行已经7,8年了,一直想做一套漂亮点的自定义控件,于是就有了本系列文章. 开源地址:https://gitee.com/kwwwvagaa/net_winform_custom_control ...

  6. win10文件备份、文件同步方案

    用个人版onedrive同步重要数据,数据安全有保障,但免费版只有15G空间,需要合理分配.(201907与别人合租家庭版,空间1T充足) google-drive可以同步指定的文件夹,但空间也只有1 ...

  7. 重读《学习JavaScript数据结构与算法-第三版》- 第4章 栈

    定场诗 金山竹影几千秋,云索高飞水自流: 万里长江飘玉带,一轮银月滚金球. 远自湖北三千里,近到江南十六州: 美景一时观不透,天缘有分画中游. 前言 本章是重读<学习JavaScript数据结构 ...

  8. Zabbix-绘制动态拓扑图基础篇

    一.实验环境 1.1 zabbix 4.0.2 二.实验需求介绍 公司希望网络拓扑能够动态反应物理接口的状态或者业务的状态,希望将网络拓扑显示到大屏上 三.Zabbix在绘制拓扑的优缺点 3.1 优点 ...

  9. MongoDB实现评论榜

    Mongodb很适合做这件事,api的调用仅仅是使用到了入门级别的CRUD,理清楚了思路,编码也会顺风顺水,所以你会发现我在这篇博客中说的比编码还多 评论榜预期的功能 就像是StackOverFlow ...

  10. Mybatis实现一对一查询 对ResultType和ResultMap分析

    实现一对一查询: ResultMap:使用ResultType实现较为简单,如果pojo中没有包括查询出来的列名,需要增加 列名对应的属性,即可完成映射. 如果没有查询结果的特殊要求建议使用Resul ...