一、模型可解释性

    近年来,机器学习(深度学习)取得了一系列骄人战绩,但是其模型的深度和复杂度远远超出了人类理解的范畴,或者称之为黑盒(机器是否同样不能理解?),当一个机器学习模型泛化性能很好时,我们可以通过交叉验证验证其准确性,并将其应用在生产环境中,但是很难去解释这个模型为什么会做出此种预测,是基于什么样的考虑?作为机器学习从业者很容易想清楚为什么有些模型存在性别歧视、种族歧视和民族仇恨言论(训练样本的问题),但是很多场景下我们需要向模型使用方作出解释,让其清楚模型为什么要做出此种预测,如模型替代医生判断病情,给出病人合理的解释至关重要,在商业场景中,模型为公司做出决策,需要给出令管理层信服的解释。另外,给出解释也可以帮助我们进一步改善模型,优化特征,提高泛化性。

    本文就LIME( Local Interpretable Model-Agnostic Explanations, LIME)方法如何解释黑盒模型作出简要的介绍和公式推导,介绍其优缺点,文末附上自己的一些简单思考

二、 LIME

    LIME的主要思想是利用可解释性模型(如线性模型,决策树)局部近似目标黑盒模型的预测,此方法不深入模型内部,通过对输入进行轻微的扰动,探测黑盒模型的输出发生何种变化,根据这种变化在兴趣点(原始输入)训练一个可解释性模型。值得注意的是,可解释性模型是黑盒模型的局部近似,而不是全局近似,这也是其名字的由来。

    LIME的数学表示如下:

\[
explanation(x)=arg\min_{g\in G}L(f,g,\pi_x)+\Omega(g)
\]

    对于实例\(x\)的解释模型\(g\),我们通过最小化损失函数来比较模型\(g\)和原模型\(f\)的近似性,其中,\(\Omega (g)\)代表了解释模型\(g\)的模型复杂度,\(G\)表示所有可能的解释模型(例如我们想用线性模型解释,则\(G\)表示所有的线性模型),\(\pi_{x}\) 定义了\(x\)的邻域。我们通过最小化\(L\)使得模型\(f\)变得可解释。其中,模型\(g\),邻域范围大小,模型复杂度均需要定义。

    下面对于结构化数据类型,简要说明LIME的工作流程。

    对于结构化数据,首先确定可解释性模型,兴趣点x,邻域的范围。LIME首先在全局进行采样,然后对于所有采样点,选出兴趣点x的邻域,然后利用兴趣点的邻域范围拟合可解释性模型。如下图\(^1\)

其中,背景灰色为负例,背景蓝色为正例,黄色为兴趣点,小粒度黑色点为采样点,大粒度黑点为邻域范围,右下图为LIME的结果。

    LIME的优点我们很容易就可以看到,原理简单,适用范围广,可解释任何黑箱模型。但是在实际应用中,存在几个问题:

  • 需要确定邻域范围;邻域范围不同,得到的局部可解释性模型可能会有很大的差别,如下图

    对于x=1.6,不同的邻域范围(0.1,0.75,2)对应的可解释性模型是完全不同的,甚至相悖。

  • 采样是全样本集采样,采样是利用高斯分布进行采样,忽略了特征之间的关系,这可能导致一些不大可能出现的样本点来解释模型。

  • 解释模型的复杂度需要提前定义。

  • 解释的不稳定性。利用相同参数相同方法进行的重复解释,得到的结果可能完全不同.\(^5\)

三、总结

    模型可解释性作为目前机器学习领域研究的热门,LIME的成果是很有启发性的,通过对黑盒模型某局部点的无限次探测,拟合出一个局部可解释性的简单模型。但是其缺点同样明显,这些缺点也导致了LIME方法难以大规模应用。

    后续将介绍基于Shapley值的SHAP方法(现在在研读,就是有点看不懂。看懂了再写)

参考链接:

  1. https://christophm.github.io/interpretable-ml-book/lime.html
  2. https://blog.csdn.net/a358463121/article/details/52313585
  3. https://cloud.tencent.com/developer/article/1096716
  4. 论文地址:https://arxiv.org/pdf/1602.04938v1.pdf
  5. Alvarez-Melis, David, and Tommi S. Jaakkola. “On the robustness of interpretability methods.” arXiv preprint arXiv:1806.08049 (2018).)

    本文由飞剑客原创,如需转载,请联系私信联系知乎:@AndyChanCD

复杂模型可解释性方法——LIME的更多相关文章

  1. NNs(Neural Networks,神经网络)和Polynomial Regression(多项式回归)等价性之思考,以及深度模型可解释性原理研究与案例

    1. Main Point 0x1:行文框架 第二章:我们会分别介绍NNs神经网络和PR多项式回归各自的定义和应用场景. 第三章:讨论NNs和PR在数学公式上的等价性,NNs和PR是两个等价的理论方法 ...

  2. 基于 Koa平台Node.js开发的KoaHub.js的控制器,模型,帮助方法自动加载

    koahub-loader koahub-loader是基于 Koa平台Node.js开发的KoaHub.js的koahub-loader控制器,模型,帮助方法自动加载 koahub loader I ...

  3. 评价指标的局限性、ROC曲线、余弦距离、A/B测试、模型评估的方法、超参数调优、过拟合与欠拟合

    1.评价指标的局限性 问题1 准确性的局限性 准确率是分类问题中最简单也是最直观的评价指标,但存在明显的缺陷.比如,当负样本占99%时,分类器把所有样本都预测为负样本也可以获得99%的准确率.所以,当 ...

  4. thinkphp模型中的获取器和修改器(根据字段名自动调用模型中的方法)

    thinkphp模型中的获取器和修改器(根据字段名自动调用模型中的方法) 一.总结 记得看下面 1.获取器的作用是在获取数据的字段值后自动进行处理 2.修改器的作用是可以在数据赋值的时候自动进行转换处 ...

  5. 深度学习模型调优方法(Deep Learning学习记录)

    深度学习模型的调优,首先需要对各方面进行评估,主要包括定义函数.模型在训练集和测试集拟合效果.交叉验证.激活函数和优化算法的选择等. 那如何对我们自己的模型进行判断呢?——通过模型训练跑代码,我们可以 ...

  6. ASP.NET MVC中的模型装配 封装方法 非常好用

    下面说一下 我们知道在asp.net mvc中 视图可以绑定一个实体模型 然后我们三层架构中也有一个model模型 但是这两个很多时候却是不一样的对象来的 就拿微软的官方mvc例子来说明 微软的视图实 ...

  7. PRML读书会第三章 Linear Models for Regression(线性基函数模型、正则化方法、贝叶斯线性回归等)

    主讲人 planktonli planktonli(1027753147) 18:58:12  大家好,我负责给大家讲讲 PRML的第3讲 linear regression的内容,请大家多多指教,群 ...

  8. sklearn中树模型可视化的方法

    在机器学习的过程中,我们常常会用到树模型的方式来解决我们的问题.在工业界,我们不仅要针对某个问题利用机器学习的方法来解决问题,而且还需要能力解释其中的原理或原因.今天主要在这里记录一下树模型是怎么做可 ...

  9. IRT模型的参数估计方法(EM算法和MCMC算法)

    1.IRT模型概述 IRT(item response theory 项目反映理论)模型.IRT模型用来描述被试者能力和项目特性之间的关系.在现实生活中,由于被试者的能力不能通过可观测的数据进行描述, ...

随机推荐

  1. SRAM和DRAM的区别

    一.浅谈关于SRAM和DRAM的区别:https://www.cnblogs.com/nano94/p/4014082.html. 二.ROM.RAM.DRAM.SRAM和FLASH的区别,转自:ht ...

  2. 学习笔记-Unity3d代码实现Windows10加载圈圈的效果

    最近在写一个Unity3d的模仿windows10的桌面的程序,由于Unity3d本身不支持Gif图片,所以突发奇想使用代码来实现接近的. 接下来是代码部分:不一一解析,很简单,看的懂原理就Okly了 ...

  3. Java web 修改默认web部署路径

    转载自:https://blog.csdn.net/lcczpp/article/details/79968070 在eclipse上面部署web项目后,它没有将你的项目文件放到tomcat 的目录下 ...

  4. 用代码触发testng实现并发测试

    有时候希望测试用例能用代码触发,发现testng支持这种操作,于是记录一下: 首先添加testng依赖: <dependency> <groupId>org.testng< ...

  5. Genymotion模拟器的安装及脚本制作

    在上一篇博文中,讲到这一篇会介绍Genymotion的安装方式.大家都知道,Genymotion是一个模拟器,获取会质疑了,直接连接真机就好了,为何还要配置模拟器?我也是用真机实践后,才选择安装的模拟 ...

  6. 松软科技课堂:sqlserver--数据类型

    SQL Server 数据类型(文章来源:松软科技www.sysoft.net.cn) Character 字符串: 数据类型 描述 存储 char(n) 固定长度的字符串.最多 8,000 个字符. ...

  7. JAVA用递归来判断回文串

    用递归来判断回文串 思路: ①首先如果是空串,一个字符,则判断是回文串 ②若不满足①,则我们需要对字符串进行递归判断,我们会想到要用第一个字符和最后一个字符进行比较,若相同则,第二个和倒数第二个进行比 ...

  8. 如何编写出高质量的 equals 和 hashcode 方法?

    什么是 equals 和 hashcode 方法? 这要从 Object 类开始说起,我们知道 Object 类是 Java 的超类,每个类都直接或者间接的继承了 Object 类,在 Object ...

  9. Linux常用命令大全(全全全!!!)

    Linux常用命令大全(非常全!!!) 最近都在和Linux打交道,感觉还不错.我觉得Linux相比windows比较麻烦的就是很多东西都要用命令来控制,当然,这也是很多人喜欢linux的原因,比较短 ...

  10. Tomcat 报错 The APR based Apache Tomcat Native library which allows optimal performance in production environmen

    这个问题在我一次重新装了tomcat和myeclipse时出现 说实话 出现这个问题头大 但是好在解决了 美滋滋 最开始到处寻找各种解决方案 最后直接注释了server.xml中的一行 直接解决这个报 ...