为了在调节网络参数(比如训练的轮数)的同时对网络进行评估,你可以将数据划分为训练集和验证集。但由于数据点很少,验证集会非常小(比如大约100 个样本)。因此,验证分数可能会有很大波动,这取决于你所选择的验证集和训练集。也就是说,验证集的划分方式可能会造成验证分数上有很大的方差,这样就无法对模型进行可靠的评估。
    在这种情况下,最佳做法是使用 K 折交叉验证。这种方法将可用数据划分为 K个分区(K 通常取 4 或 5),实例化 K 个相同的模型,将每个模型在 K-1 个分区上训练,并在剩下的一个分区上进行评估。模型的验证分数等于 K 个验证分数的平均值。 

一个可能的程序示例:

k = 4 #划分成k块
num_validation_samples = len(data) // k
np.random.shuffle(data)
validation_scores = []
for fold in range(k):
  validation_data = data[num_validation_samples * fold : num_validation_samples * (fold + 1)]
  training_data = data[:num_validation_samples * fold] + data[num_validation_samples * (fold + 1):]
model = get_model()
model.train(training_data)
validation_score = model.evaluate(validation_data)
validation_scores.append(validation_score)
validation_score = np.average(validation_scores)
model = get_model()
model.train(data)
test_score = model.evaluate(test_data)

K 折验证的更多相关文章

  1. sklearn的K折交叉验证函数KFold使用

    K折交叉验证时使用: KFold(n_split, shuffle, random_state) 参数:n_split:要划分的折数 shuffle: 每次都进行shuffle,测试集中折数的总和就是 ...

  2. 机器学习--K折交叉验证和非负矩阵分解

    1.交叉验证 交叉验证(Cross validation),交叉验证用于防止模型过于复杂而引起的过拟合.有时亦称循环估计, 是一种统计学上将数据样本切割成较小子集的实用方法. 于是可以先在一个子集上做 ...

  3. cross_val_score 交叉验证与 K折交叉验证,嗯都是抄来的,自己作个参考

    因为sklearn cross_val_score 交叉验证,这个函数没有洗牌功能,添加K 折交叉验证,可以用来选择模型,也可以用来选择特征 sklearn.model_selection.cross ...

  4. 小白学习之pytorch框架(7)之实战Kaggle比赛:房价预测(K折交叉验证、*args、**kwargs)

    本篇博客代码来自于<动手学深度学习>pytorch版,也是代码较多,解释较少的一篇.不过好多方法在我以前的博客都有提,所以这次没提.还有一个原因是,这篇博客的代码,只要好好看看肯定能看懂( ...

  5. 小白学习之pytorch框架(6)-模型选择(K折交叉验证)、欠拟合、过拟合(权重衰减法(=L2范数正则化)、丢弃法)、正向传播、反向传播

    下面要说的基本都是<动手学深度学习>这本花书上的内容,图也采用的书上的 首先说的是训练误差(模型在训练数据集上表现出的误差)和泛化误差(模型在任意一个测试数据集样本上表现出的误差的期望) ...

  6. k折交叉验证

    原理:将原始数据集划分为k个子集,将其中一个子集作为验证集,其余k-1个子集作为训练集,如此训练和验证一轮称为一次交叉验证.交叉验证重复k次,每个子集都做一次验证集,得到k个模型,加权平均k个模型的结 ...

  7. 偏差(bias)和方差(variance)及其与K折交叉验证的关系

    先上图: 泛化误差可表示为偏差.方差和噪声之和 偏差(bias):学习算法的期望预测与真实结果(train set)的偏离程度(平均预测值与真实值之差),刻画算法本身的拟合能力: 方差(varianc ...

  8. K折-交叉验证

    k-折交叉验证(k-fold crossValidation):在机器学习中,将数据集A分为训练集(training set)B和测试集(test set)C,在样本量不充足的情况下,为了充分利用数据 ...

  9. KFold,StratifiedKFold k折交叉切分

    python风控评分卡建模和风控常识(博客主亲自录制视频教程) https://study.163.com/course/introduction.htm?courseId=1005214003&am ...

随机推荐

  1. django-ajax传输数据

    AJAX简介 AJAX(Asynchronous Javascript And XML)翻译成中文就是"异步Javascript和XML". 即使用Javascript语言与服务器 ...

  2. 成功的面对对象语言的五个基本特性——Alan Kay

    1.万物皆为对象. 将对象是为奇特的变量,它可以存储数据,除此之外,还可以要求他在自身上执行操作. 2.程序是对象的集合,他们通过发送消息来告知彼此所要做的. 要想请求一个对象,就必须对该对项发送一条 ...

  3. 小白的springboot之路(三)、集成mybatis与MySQL

    0.前言 mybatis属于半自动的ORM,相比hibernate这种全自动的ORM,兼顾了性能与易用:目前企业项目中,基本都是mybatis的天下:今天就来整合mybatis与MySQL: 1.整合 ...

  4. css实现input表单验证

    有没有办法只通过css来确定input标签是否有输入? 我有这个想法是因为我想完成一个自动补全的input部件,最基本的功能是: 如果input没有内容,这隐藏下拉框 反之,显示下拉框 我找到了一个也 ...

  5. luogu P2812 校园网络【[USACO]Network of Schools加强版】|Tarjan

    题目背景 浙江省的几所OI强校的神犇发明了一种人工智能,可以AC任何题目,所以他们决定建立一个网络来共享这个软件.但是由于他们脑力劳动过多导致全身无力身体被♂掏♂空,他们来找你帮助他们. 题目描述 共 ...

  6. 记一次Elasticsearch OOM的优化过程——基于segments force merge 和 store type 转为 niofs

    首选,说明笔者的机器环境(不结合环境谈解决方案都是耍流氓): cpu 32核,内存128G,非固态硬盘: RAID0 (4T * 6),单节点,数据量在700G到1800G,索引15亿~21亿.敖丙大 ...

  7. BOM对象中的常用方法

    先看body中的内容: <body οnlοad="demo1()"> <p> <input type="button" id=& ...

  8. 基于iCamera测试高清摄像头OV7725小结

    基于iCamera测试高清摄像头OV7725小结 先看看硬件特点 然后看看硬件测试,usb采集出图 默认是不带晶振的,可以通过usb提供提供12M.24M.48M时钟 软件出图 可以通过修改0x11, ...

  9. unittest自动化测试框架

    目录 框架的概念 Unittest单元测试框架 常用的assert语句 unittest创建测试代码的方式: unittest构建测试套件(测试用例集合): unittest忽略测试用例: 运行测试集 ...

  10. ==和equals的深度分析

    ==的分析 1.对于基本数据类型,比较的是他们的具体内容是不是一样,跟他们的内存地址无关.举个栗子: public class Test{ public static void main(String ...