版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明。

一、广度优先搜索介绍

广度优先搜索算法(Breadth First Search),又称为"宽度优先搜索"或"横向优先搜索",简称BFS。

它的思想是:从图中某顶点v出发,在访问了v之后依次访问v的各个未曾访问过的邻接点,然后分别从这些邻接点出发依次访问它们的邻接点,并使得“先被访问的顶点的邻接点先于后被访问的顶点的邻接点被访问,直至图中所有已被访问的顶点的邻接点都被访问到。如果此时图中尚有顶点未被访问,则需要另选一个未曾被访问过的顶点作为新的起始点,重复上述过程,直至图中所有顶点都被访问到为止。

换句话说,广度优先搜索遍历图的过程是以v为起点,由近至远,依次访问和v有路径相通且路径长度为1,2...的顶点。

二、广度优先搜索图解

1.无向图的广度优先搜索

下面以"无向图"为例,来对广度优先搜索进行演示。还是以上面的图G1为例进行说明。

  1. 第1步:访问A。
  2. 第2步:依次访问C,D,F。 在访问了A之后,接下来访问A的邻接点。前面已经说过,在本文实现中,顶点ABCDEFG按照顺序存储的,C在"D和F"的前面,因此,先访问C。再访问完C之后,再依次访问D,F。
  3. 第3步:依次访问B,G。在第2步访问完C,D,F之后,再依次访问它们的邻接点。首先访问C的邻接点B,再访问F的邻接点G。
  4. 第4步:访问E。 在第3步访问完B,G之后,再依次访问它们的邻接点。只有G有邻接点E,因此访问G的邻接点E。

因此访问顺序是:A -> C -> D -> F -> B -> G -> E

2.有向图的广度优先搜索

下面以"有向图"为例,来对广度优先搜索进行演示。还是以上面的图G2为例进行说明。

  1. 第1步:访问A。
  2. 第2步:访问B。
  3. 第3步:依次访问C,E,F。 在访问了B之后,接下来访问B的出边的另一个顶点,即C,E,F。前面已经说过,在本文实现中,顶点ABCDEFG按照顺序存储的,因此会先访问C,再依次访问E,F。
  4. 第4步:依次访问D,G。在访问完C,E,F之后,再依次访问它们的出边的另一个顶点。还是按照C,E,F的顺序访问,C的已经全部访问过了,那么就只剩下E,F;先访问E的邻接点D,再访问F的邻接点G。

因此访问顺序是:A -> B -> C -> E -> F -> D -> G

三、代码实现

核心代码:

/**
* 图的广度优先遍历算法
*/
private void boardFirstSearch(int i) {
LinkedList<Integer> queue = new LinkedList<>();
System.out.println("访问到了:" + i + "顶点");
isVisited[i] = true;
queue.add(i); while (queue.size() > 0) {
int w = queue.removeFirst().intValue();
int n = getFirstNeighbor(w);
while (n != -1) {
if (!isVisited[n]) {
System.out.println("访问到了:" + n + "顶点");
isVisited[n] = true;
queue.add(n);
}
n = getNextNeighbor(w, n);
}
}
}

四、图的DFS和BFS完整代码

import java.util.LinkedList;

public class Graph {

    private int vertexSize; // 顶点数量
private int[] vertexs; // 顶点数组
private int[][] matrix; // 包含所有顶点的数组
// 路径权重
// 0意味着顶点自己到自己,无意义
// MAX_WEIGHT也意味着到目的顶点不可达
private static final int MAX_WEIGHT = 1000;
private boolean[] isVisited; // 某顶点是否被访问过 public Graph(int vertextSize) {
this.vertexSize = vertextSize;
matrix = new int[vertextSize][vertextSize];
vertexs = new int[vertextSize];
for (int i = 0; i < vertextSize; i++) {
vertexs[i] = i;
}
isVisited = new boolean[vertextSize];
} /**
* 获取指定顶点的第一个邻接点
*
* @param index
* 指定邻接点
* @return
*/
private int getFirstNeighbor(int index) {
for (int i = 0; i < vertexSize; i++) {
if (matrix[index][i] < MAX_WEIGHT && matrix[index][i] > 0) {
return i;
}
}
return -1;
} /**
* 获取指定顶点的下一个邻接点
*
* @param v
* 指定的顶点
* @param index
* 从哪个邻接点开始
* @return
*/
private int getNextNeighbor(int v, int index) {
for (int i = index+1; i < vertexSize; i++) {
if (matrix[v][i] < MAX_WEIGHT && matrix[v][i] > 0) {
return i;
}
}
return -1;
} /**
* 图的深度优先遍历算法
*/
private void depthFirstSearch(int i) {
isVisited[i] = true;
int w = getFirstNeighbor(i);
while (w != -1) {
if (!isVisited[w]) {
// 需要遍历该顶点
System.out.println("访问到了:" + w + "顶点");
depthFirstSearch(w); // 进行深度遍历
}
w = getNextNeighbor(i, w); // 第一个相对于w的邻接点
}
} /**
* 图的广度优先遍历算法
*/
private void boardFirstSearch(int i) {
LinkedList<Integer> queue = new LinkedList<>();
System.out.println("访问到了:" + i + "顶点");
isVisited[i] = true;
queue.add(i); while (queue.size() > 0) {
int w = queue.removeFirst().intValue();
int n = getFirstNeighbor(w);
while (n != -1) {
if (!isVisited[n]) {
System.out.println("访问到了:" + n + "顶点");
isVisited[n] = true;
queue.add(n);
}
n = getNextNeighbor(w, n);
}
}
} public static void main(String[] args) {
Graph graph = new Graph(9); // 顶点的矩阵设置
int[] a1 = new int[] { 0, 10, MAX_WEIGHT, MAX_WEIGHT, MAX_WEIGHT, 11, MAX_WEIGHT, MAX_WEIGHT, MAX_WEIGHT };
int[] a2 = new int[] { 10, 0, 18, MAX_WEIGHT, MAX_WEIGHT, MAX_WEIGHT, 16, MAX_WEIGHT, 12 };
int[] a3 = new int[] { MAX_WEIGHT, MAX_WEIGHT, 0, 22, MAX_WEIGHT, MAX_WEIGHT, MAX_WEIGHT, MAX_WEIGHT, 8 };
int[] a4 = new int[] { MAX_WEIGHT, MAX_WEIGHT, 22, 0, 20, MAX_WEIGHT, 24, 16, 21 };
//int[] a4 = new int[] { MAX_WEIGHT, MAX_WEIGHT, 22, 0, 20, MAX_WEIGHT, MAX_WEIGHT, 16, 21 };
int[] a5 = new int[] { MAX_WEIGHT, MAX_WEIGHT, MAX_WEIGHT, 20, 0, 26, MAX_WEIGHT, 7, MAX_WEIGHT };
int[] a6 = new int[] { 11, MAX_WEIGHT, MAX_WEIGHT, MAX_WEIGHT, 26, 0, 17, MAX_WEIGHT, MAX_WEIGHT };
int[] a7 = new int[] { MAX_WEIGHT, 16, MAX_WEIGHT, 24, MAX_WEIGHT, 17, 0, 19, MAX_WEIGHT };
//int[] a7 = new int[] { MAX_WEIGHT, 16, MAX_WEIGHT, MAX_WEIGHT, MAX_WEIGHT, 17, 0, 19, MAX_WEIGHT };
int[] a8 = new int[] { MAX_WEIGHT, MAX_WEIGHT, MAX_WEIGHT, 16, 7, MAX_WEIGHT, 19, 0, MAX_WEIGHT };
int[] a9 = new int[] { MAX_WEIGHT, 12, 8, 21, MAX_WEIGHT, MAX_WEIGHT, MAX_WEIGHT, MAX_WEIGHT, 0 }; graph.matrix[0] = a1;
graph.matrix[1] = a2;
graph.matrix[2] = a3;
graph.matrix[3] = a4;
graph.matrix[4] = a5;
graph.matrix[5] = a6;
graph.matrix[6] = a7;
graph.matrix[7] = a8;
graph.matrix[8] = a9; graph.depthFirstSearch(0);
//graph.boardFirstSearch(0);
} }

五、总结

  • 广度优先遍历表示把每一层都遍历完才能遍历下一层
  • 我们来思考:假设v0有3个邻接点,v1 v2 v3
    • 我们访问v0后,然后访问v1 v2 v3。完毕后我们要从v1开始遍历它的邻接点,接着从v2开始遍历它的邻接点,最后是从v3开始遍历它的邻接点。
    • 也就是说,3个邻接点访问完后。我们要回过头逐个遍历它们的邻接点。这一点我觉得要用个容器把它们顺序存储下来。然后每次从容器首部取出一个顶点开始遍历。这里我想到LinkedList,因为它适合增删。而且这里不需要遍历集合。
  • 我们可以把第一个顶点放进集合,然后while(!queue.isEmpty())while(queue.size() > 0)都行。开始循环。

    • 然后取出并删除集合中第一个顶点元素的第一个邻接点。对这个顶点进行访问,

      • 如果该顶点未访问过,就访问!然后将该顶点放入集合。
      • 如果该顶点已访问过,就找该顶点的下一个邻接点。

我的微信公众号:架构真经(id:gentoo666),分享Java干货,高并发编程,热门技术教程,微服务及分布式技术,架构设计,区块链技术,人工智能,大数据,Java面试题,以及前沿热门资讯等。每日更新哦!

参考资料:

  1. https://blog.csdn.net/Strive_Y/article/details/81810012
  2. https://www.jianshu.com/p/23b55db1adc0

程序员的算法课(18)-常用的图算法:广度优先(BFS)的更多相关文章

  1. 程序员的算法课(19)-常用的图算法:最短路径(Shortest Path)

    版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/m0_37609579/article/de ...

  2. 程序员的算法课(20)-常用的图算法:最小生成树(MST)

    版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/m0_37609579/article/de ...

  3. 程序员的算法课(17)-常用的图算法:深度优先(DFS)

    版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/m0_37609579/article/de ...

  4. 程序员的算法课(3)-递归(recursion)算法

    版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/m0_37609579/article/de ...

  5. 程序员的算法课(16)-B+树在数据库索引中的作用

    版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/m0_37609579/article/de ...

  6. 程序员的算法课(14)-Hash算法-对海量url判重

    版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/m0_37609579/article/de ...

  7. 程序员的算法课(11)-KMP算法

    版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/m0_37609579/article/de ...

  8. 程序员的算法课(6)-最长公共子序列(LCS)

    版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/m0_37609579/article/de ...

  9. 给c++程序员的一份礼物——常用工具集

    给c++程序员的一份礼物——常用工具集 [声明]如需复制.传播,请附上本声明,谢谢.原文出处:http://morningspace.51.net/,moyingzz@etang.com 所谓&quo ...

随机推荐

  1. ERP 到底是什么? 一则故事搞懂ERP

    你知道什么是ERP? ERP是什么? 你知道什么是ERP吗? (通俗易懂版) 一个故事搞懂“ERP” 一天中午,丈夫在外给家里打电话:“亲爱的老婆,晚上我想带几个同事回家吃饭可以吗?”(订货意向) 妻 ...

  2. 【MySQL】MySQL Workbench快捷键小结

    执行当前行,ctrl+enter 执行整篇sql脚本: ctrl+shift+enter 格式化sql语句(美化sql语句):ctrl+b 自动补全:ctrl+space(似乎win10中这个快捷键失 ...

  3. Mybaits 源码解析 (七)----- Select 语句的执行过程分析(下篇)(Mapper方法是如何调用到XML中的SQL的?)全网最详细,没有之一

    我们上篇文章讲到了查询方法里面的doQuery方法,这里面就是调用JDBC的API了,其中的逻辑比较复杂,我们这边文章来讲,先看看我们上篇文章分析的地方 SimpleExecutor public & ...

  4. python基础-元组(tuple)及内置方法

    元组-tuple 用途:用于存储多个不同类型的值,但是不能存储可变类型数据 定义方法:用小括号存储数据,数据与数据之间通过逗号分隔,元组中的值不能改变. 注意: 1.定义元组时,如果里面只有一个值,在 ...

  5. 条款03:尽肯使用const

    定义常量 define 是一个Compile-Time的概念,它的生命周期止于编译器期,它存在与程序的代码段,在实际程序中它只是一个常数.一个命令中的参数.并没有实际的存在 const常量存在于程序的 ...

  6. Linux 如何创建或删除以横杠(-)开头的文件或目录

    小测试: [root@test test]# ls [root@test test]# touch -abc touch: invalid option -- 'b' Try `touch --hel ...

  7. RTKLib的Manual解读

    Key-word: integer ambiguity resolution :整周模糊度解算 navigation:导航 Kinematic:动态,RTK的K rover:漫游 validation ...

  8. C/c.pp:贪心,二分答案

    说是贪心有点牵强. 其次,答案满足单调性,如果在k次操作能完成那么在k+1次操作内也能完成. 因为大不了你就把多的一次对方操作再进行一次就好了. 怎么操作呢? 我们从头扫这个序列,遇到每一个不匹配位置 ...

  9. vm虚拟机安装linux centos教程

    1 下载64btnhttp://isoredirect.centos.org/centos/7/isos/x86_64/CentOS-7-x86_64-DVD-1810.iso 2 vm注意选择cen ...

  10. Kubernetes Horizontal Pod Autoscaling

    HPA介绍 Horizo​​ntal Pod Autoscaler基于观察到的CPU利用率(或借助自定义指标 支持,基于其他一些应用程序提供的指标)自动缩放复制控制器,部署或副本集中的Pod数量 .请 ...