通过阅读本篇文章将了解到

  • 1.日志输出到文件并根据LEVEL级别将日志分类保存到不同文件
  • 2.通过异步输出日志减少磁盘IO提高性能
  • 3.异步输出日志的原理

配置文件logback-spring.xml

SpringBoot工程自带logbackslf4j的依赖,所以重点放在编写配置文件上,需要引入什么依赖,日志依赖冲突统统都不需要我们管了。logback框架会默认加载classpath下命名为logback-springlogback的配置文件。将所有日志都存储在一个文件中文件大小也随着应用的运行越来越大并且不好排查问题,正确的做法应该是将error日志和其他日志分开,并且不同级别的日志根据时间段进行记录存储。

<?xml version="1.0" encoding="utf-8"?>
<configuration>
<property resource="logback.properties"/>
<appender name="CONSOLE-LOG" class="ch.qos.logback.core.ConsoleAppender">
<layout class="ch.qos.logback.classic.PatternLayout">
<pattern>[%d{yyyy-MM-dd' 'HH:mm:ss.sss}] [%C] [%t] [%L] [%-5p] %m%n</pattern>
</layout>
</appender>
<!--获取比info级别高(包括info级别)但除error级别的日志-->
<appender name="INFO-LOG" class="ch.qos.logback.core.rolling.RollingFileAppender">
<filter class="ch.qos.logback.classic.filter.LevelFilter">
<level>ERROR</level>
<onMatch>DENY</onMatch>
<onMismatch>ACCEPT</onMismatch>
</filter>
<encoder>
<pattern>[%d{yyyy-MM-dd' 'HH:mm:ss.sss}] [%C] [%t] [%L] [%-5p] %m%n</pattern>
</encoder> <!--滚动策略-->
<rollingPolicy class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy">
<!--路径-->
<fileNamePattern>${LOG_INFO_HOME}//%d.log</fileNamePattern>
<maxHistory>30</maxHistory>
</rollingPolicy>
</appender>
<appender name="ERROR-LOG" class="ch.qos.logback.core.rolling.RollingFileAppender">
<filter class="ch.qos.logback.classic.filter.ThresholdFilter">
<level>ERROR</level>
</filter>
<encoder>
<pattern>[%d{yyyy-MM-dd' 'HH:mm:ss.sss}] [%C] [%t] [%L] [%-5p] %m%n</pattern>
</encoder>
<!--滚动策略-->
<rollingPolicy class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy">
<!--路径-->
<fileNamePattern>${LOG_ERROR_HOME}//%d.log</fileNamePattern>
<maxHistory>30</maxHistory>
</rollingPolicy>
</appender> <root level="info">
<appender-ref ref="CONSOLE-LOG" />
<appender-ref ref="INFO-LOG" />
<appender-ref ref="ERROR-LOG" />
</root>
</configuration>

部分标签说明

  • <root>

    标签,必填标签,用来指定最基础的日志输出级别

    • <appender-ref>标签,添加append
  • <append>

    标签,通过使用该标签指定日志的收集策略

    • name属性指定appender命名
    • class属性指定输出策略,通常有两种,控制台输出和文件输出,文件输出就是将日志进行一个持久化。ConsoleAppender将日志输出到控制台
  • <filter>

    标签,通过使用该标签指定过滤策略

    • <level>标签指定过滤的类型
  • <encoder>标签,使用该标签下的<pattern>标签指定日志输出格式

  • <rollingPolicy>

    标签指定收集策略,比如基于时间进行收集

    • <fileNamePattern>标签指定生成日志保存地址 通过这样配置已经实现了分类分天手机日志的目标了

logback 高级特性异步输出日志

之前的日志配置方式是基于同步的,每次日志输出到文件都会进行一次磁盘IO。采用异步写日志的方式而不让此次写日志发生磁盘IO,阻塞线程从而造成不必要的性能损耗。异步输出日志的方式很简单,添加一个基于异步写日志的appender,并指向原先配置的appender即可

 <!-- 异步输出 -->
<appender name="ASYNC-INFO" class="ch.qos.logback.classic.AsyncAppender">
<!-- 不丢失日志.默认的,如果队列的80%已满,则会丢弃TRACT、DEBUG、INFO级别的日志 -->
<discardingThreshold>0</discardingThreshold>
<!-- 更改默认的队列的深度,该值会影响性能.默认值为256 -->
<queueSize>256</queueSize>
<!-- 添加附加的appender,最多只能添加一个 -->
<appender-ref ref="INFO-LOG"/>
</appender> <appender name="ASYNC-ERROR" class="ch.qos.logback.classic.AsyncAppender">
<!-- 不丢失日志.默认的,如果队列的80%已满,则会丢弃TRACT、DEBUG、INFO级别的日志 -->
<discardingThreshold>0</discardingThreshold>
<!-- 更改默认的队列的深度,该值会影响性能.默认值为256 -->
<queueSize>256</queueSize>
<!-- 添加附加的appender,最多只能添加一个 -->
<appender-ref ref="ERROR-LOG"/>
</appender>

异步输出日志性能测试

既然能提高性能的话,必须进行一次测试比对,同步和异步输出日志性能到底能提升多少倍?

服务器硬件
  • CPU六核
  • 内存 8G
测试工具
Apache Jmeter
同步输出日志
  • 线程数:100

  • Ramp-Up Loop(可以理解为启动线程所用时间) :0 可以理解为100个线程同时启用

  • 测试结果

    重点关注指标

    Throughput【TPS】

    吞吐量:系统在单位时间内处理请求的数量,在同步输出日志中

    TPS

    44.2/sec

异步输出日志
  • 线程数 100

  • Ramp-Up Loop:0

  • 测试结果

    TPS

    497.5/sec

    性能提升了10多倍!!!

异步日志输出原理

logback框架下的Logger.info方法开始追踪。一路的方法调用路径如下图所示:

异步输出日志中最关键的就是配置文件中ch.qos.logback.classic``AsyncAppenderBase``append

protected void append(E eventObject) {
if(!this.isQueueBelowDiscardingThreshold() || !this.isDiscardable(eventObject)) {
this.preprocess(eventObject);
this.put(eventObject);
}
}

通过队列情况判断是否需要丢弃日志,不丢弃的话将它放到阻塞队列中,通过查看代码,这个阻塞队列为ArrayBlockingQueueu,默认大小为256,可以通过配置文件进行修改。Logger.info(...)append(...)就结束了,只做了将日志塞入到阻塞队列的事,然后继续执行Logger.info(...)下面的语句了。 在AsyncAppenderBase类中定义了一个Worker线程,run方法中的关键部分代码如下:

E e = parent.blockingQueue.take();
aai.appendLoopOnAppenders(e);

从阻塞队列中取出一个日志,并调用AppenderAttachableImpl类中的appendLoopOnAppenders方法维护一个Append列表。Worker线程中调用方法过程主要如下图:

最主要的两个方法就是encode``write``encode

作者:何甜甜在吗链接:https://juejin.im/post/5d4d61326fb9a06aff5e5ff5

最后附:项目完整代码

异步输出日志
<?xml version="1.0" encoding="utf-8"?>
<configuration>
<property resource="logback.properties"/>
<appender name="CONSOLE-LOG" class="ch.qos.logback.core.ConsoleAppender">
<layout class="ch.qos.logback.classic.PatternLayout">
<pattern>[%d{yyyy-MM-dd' 'HH:mm:ss.sss}] [%C] [%t] [%L] [%-5p] %m%n</pattern>
</layout>
</appender>
<!--获取比info级别高(包括info级别)但除error级别的日志-->
<appender name="INFO-LOG" class="ch.qos.logback.core.rolling.RollingFileAppender">
<filter class="ch.qos.logback.classic.filter.LevelFilter">
<level>ERROR</level>
<onMatch>DENY</onMatch>
<onMismatch>ACCEPT</onMismatch>
</filter>
<encoder>
<pattern>[%d{yyyy-MM-dd' 'HH:mm:ss.sss}] [%C] [%t] [%L] [%-5p] %m%n</pattern>
</encoder> <!--滚动策略-->
<rollingPolicy class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy">
<!--路径-->
<fileNamePattern>${LOG_INFO_HOME}//%d.log</fileNamePattern>
<maxHistory>30</maxHistory>
</rollingPolicy>
</appender>
<appender name="ERROR-LOG" class="ch.qos.logback.core.rolling.RollingFileAppender">
<filter class="ch.qos.logback.classic.filter.ThresholdFilter">
<level>ERROR</level>
</filter>
<encoder>
<pattern>[%d{yyyy-MM-dd' 'HH:mm:ss.sss}] [%C] [%t] [%L] [%-5p] %m%n</pattern>
</encoder>
<!--滚动策略-->
<rollingPolicy class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy">
<!--路径-->
<fileNamePattern>${LOG_ERROR_HOME}//%d.log</fileNamePattern>
<maxHistory>30</maxHistory>
</rollingPolicy>
</appender>
<!-- 异步输出 -->
<appender name="ASYNC-INFO" class="ch.qos.logback.classic.AsyncAppender">
<!-- 不丢失日志.默认的,如果队列的80%已满,则会丢弃TRACT、DEBUG、INFO级别的日志 -->
<discardingThreshold>0</discardingThreshold>
<!-- 更改默认的队列的深度,该值会影响性能.默认值为256 -->
<queueSize>256</queueSize>
<!-- 添加附加的appender,最多只能添加一个 -->
<appender-ref ref="INFO-LOG"/>
</appender> <appender name="ASYNC-ERROR" class="ch.qos.logback.classic.AsyncAppender">
<!-- 不丢失日志.默认的,如果队列的80%已满,则会丢弃TRACT、DEBUG、INFO级别的日志 -->
<discardingThreshold>0</discardingThreshold>
<!-- 更改默认的队列的深度,该值会影响性能.默认值为256 -->
<queueSize>256</queueSize>
<!-- 添加附加的appender,最多只能添加一个 -->
<appender-ref ref="ERROR-LOG"/>
</appender> <root level="info">
<appender-ref ref="CONSOLE-LOG" />
<appender-ref ref="INFO-LOG" />
<appender-ref ref="ERROR-LOG" />
</root>
</configuration>
LOG_ERROR_HOME=C://Users//hetiantian//Desktop//log//error
LOG_INFO_HOME=C://Users//hetiantian//Desktop//log//info

Logback配置文件这么写,TPS提高10倍的更多相关文章

  1. 存算分离下写性能提升10倍以上,EMR Spark引擎是如何做到的?

    ​引言 随着大数据技术架构的演进,存储与计算分离的架构能更好的满足用户对降低数据存储成本,按需调度计算资源的诉求,正在成为越来越多人的选择.相较 HDFS,数据存储在对象存储上可以节约存储成本,但与此 ...

  2. 使用 PyTorch Lightning 将深度学习管道速度提高 10 倍

    ​  前言  本文介绍了如何使用 PyTorch Lightning 构建高效且快速的深度学习管道,主要包括有为什么优化深度学习管道很重要.使用 PyTorch Lightning 加快实验周期的六种 ...

  3. Logback配置文件这么写,还愁不会整理日志?

    摘要: 1.日志输出到文件并根据LEVEL级别将日志分类保存到不同文件 2.通过异步输出日志减少磁盘IO提高性能 3.异步输出日志的原理 1.配置文件logback-spring.xml Spring ...

  4. 将Web应用性能提高十倍的10条建议

    导读 提高 web 应用的性能从来没有比现在更重要过.网络经济的比重一直在增长:全球经济超过 5% 的价值是在因特网上产生的(数据参见下面的资料).这个时刻在线的超连接世界意味着用户对其的期望值也处于 ...

  5. 将 Web 应用性能提高十倍的10条建议

    提高 web 应用的性能从来没有比现在更重要过.网络经济的比重一直在增长:全球经济超过 5% 的价值是在因特网上产生的(数据参见下面的资料).这个时刻在线的超连接世界意味着用户对其的期望值也处于历史上 ...

  6. Web 应用性能提升 10 倍的 10 个建议

    转载自http://blog.jobbole.com/94962/ 提升 Web 应用的性能变得越来越重要.线上经济活动的份额持续增长,当前发达世界中 5 % 的经济发生在互联网上(查看下面资源的统计 ...

  7. 使用生成器把Kafka写入速度提高1000倍

    title: 使用生成器把Kafka写入速度提高1000倍 toc: true comment: true date: 2018-04-13 21:35:09 tags: ['Python', '经验 ...

  8. 一次 Spark SQL 性能提升10倍的经历(转载)

    1. 遇到了啥问题 是酱紫的,简单来说:并发执行 spark job 的时候,并发的提速很不明显. 嗯,且听我慢慢道来,啰嗦点说,类似于我们内部有一个系统给分析师用,他们写一些 sql,在我们的 sp ...

  9. 程序员需要经纪人吗?10x 最好的程序员其生产力相当于同行的 10 倍~

    原文地址 10x 起源于技术界一个流行的说法,即最好的程序员是超级明星,其生产力相当于同行的 10 倍: Google 园区以好玩的设施闻名:小憩舱.球坑.按摩.干洗.随便吃到饱的自助餐.(为了拍人才 ...

随机推荐

  1. Easy doesn't enter into grown-up life

    Hi xinlu, good afternoon, my name is xx, you can also call me andrew. i'm 31 years old, and i'm from ...

  2. c++复杂桶排序Java版

    c++复杂桶排序Java版 题目和我的前几个排序一样 这次是Java版的 代码 + 注释 package com.vdian.qatest.supertagbiz.test.niu; /** * Cr ...

  3. Nginx+Lua+MySQL/Redis实现高性能动态网页展现

    Nginx结合Lua脚本,直接绕过Tomcat应用服务器,连接MySQL/Redis直接获取数据,再结合Lua中Template组件,直接写入动态数据,渲染成页面,响应前端,一次请求响应过程结束.最终 ...

  4. Spring Cloud Alibaba | Nacos配置管理

    目录 Spring Cloud Alibaba | Nacos配置管理 1. pom.xml 项目依赖 2. 在 bootstrap.properties 中配置 Nacos server 的地址和应 ...

  5. Bzoj 1229: [USACO2008 Nov]toy 玩具 题解 三分+贪心

    1229: [USACO2008 Nov]toy 玩具 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 338  Solved: 136[Submit] ...

  6. 第三章.定制专属的kali

    1.更新升级 • apt-get update • apt-get upgrade • apt-get dis-upgrade   2.根据个人喜好需求安装软件包 • 库 • Apt-get命令 • ...

  7. weblogic安装时检查监视器: 必须配置为至少显示 256 种颜色,实际空间未知→失败

    1.首先如果你出现的结果是[未通过],则设置DISPLAY环境变量. 按网上方法:export DISPLAY=:0.0 然后继续安装你的东西……若成功则恭喜你~ 若[失败],按网上方法让你去看日志 ...

  8. ctrl shift o失效

    是这样的.preference -> general -> keys ,找到Organize Imports ,然后 在 “WHEN”里面 要选择 Editing JAVA SOURCE. ...

  9. 成为高级 React 开发你需要知道的知识点

    简评:除了常见的 HOC 和 RenderProp 技巧,作者介绍了 7 个有用的知识点. 使用 Fragment 而不是 div 很多时候我们想要处理多个 component,但是 render 只 ...

  10. RabbitMQ(三):RabbitMQ与Spring Boot简单整合

    RabbitMQ是目前非常热门的一款消息中间件,不管是互联网大厂还是中小企业都在大量使用.Spring Boot的兴起,极大地简化了Spring的开发,本文将使用Spring Boot与RabbitM ...