D2. Optimal Subsequences (Hard Version)

This is the harder version of the problem. In this version, 1≤n,m≤2⋅105. You can hack this problem if you locked it. But you can hack the previous problem only if you locked both problems.

You are given a sequence of integers a=[a1,a2,…,an] of length n. Its subsequence is obtained by removing zero or more elements from the sequence a (they do not necessarily go consecutively). For example, for the sequence a=[11,20,11,33,11,20,11]:

[11,20,11,33,11,20,11], [11,20,11,33,11,20], [11,11,11,11], [20], [33,20] are subsequences (these are just some of the long list);

[40], [33,33], [33,20,20], [20,20,11,11] are not subsequences.

Suppose that an additional non-negative integer k (1≤k≤n) is given, then the subsequence is called optimal if:

it has a length of k and the sum of its elements is the maximum possible among all subsequences of length k;

and among all subsequences of length k that satisfy the previous item, it is lexicographically minimal.

Recall that the sequence b=[b1,b2,…,bk] is lexicographically smaller than the sequence c=[c1,c2,…,ck] if the first element (from the left) in which they differ less in the sequence b than in c. Formally: there exists t (1≤t≤k) such that b1=c1, b2=c2, ..., bt−1=ct−1 and at the same time bt<ct. For example:

[10,20,20] lexicographically less than [10,21,1],

[7,99,99] is lexicographically less than [10,21,1],

[10,21,0] is lexicographically less than [10,21,1].

You are given a sequence of a=[a1,a2,…,an] and m requests, each consisting of two numbers kj and posj (1≤k≤n, 1≤posj≤kj). For each query, print the value that is in the index posj of the optimal subsequence of the given sequence a for k=kj.

For example, if n=4, a=[10,20,30,20], kj=2, then the optimal subsequence is [20,30] — it is the minimum lexicographically among all subsequences of length 2 with the maximum total sum of items. Thus, the answer to the request kj=2, posj=1 is the number 20, and the answer to the request kj=2, posj=2 is the number 30.

Input

The first line contains an integer n (1≤n≤2⋅105) — the length of the sequence a.

The second line contains elements of the sequence a: integer numbers a1,a2,…,an (1≤ai≤109).

The third line contains an integer m (1≤m≤2⋅105) — the number of requests.

The following m lines contain pairs of integers kj and posj (1≤k≤n, 1≤posj≤kj) — the requests.

Output

Print m integers r1,r2,…,rm (1≤rj≤109) one per line: answers to the requests in the order they appear in the input. The value of rj should be equal to the value contained in the position posj of the optimal subsequence for k=kj.

Examples

input

3

10 20 10

6

1 1

2 1

2 2

3 1

3 2

3 3

output

20

10

20

10

20

10

input

7

1 2 1 3 1 2 1

9

2 1

2 2

3 1

3 2

3 3

1 1

7 1

7 7

7 4

output

2

3

2

3

2

3

1

1

3

Note

In the first example, for a=[10,20,10] the optimal subsequences are:

for k=1: [20],

for k=2: [10,20],

for k=3: [10,20,10].

题意

给你n个数,定义长度为k的理想序列为当前k个数和最大的子序列,且这个子序列的字典序要最小。

然后现在给你q个询问,每次问你长度为ki的理想序列的第pos个数是什么

题解

理想序列的构成,显然是贪心的,每次放最大的字典序最小的数进去。

我们将询问离线之后,难点就变成如何求第k个数是多少,实际上这个就是典型的离线求第k大的题目。。。做法非常多,我才用的是树状数组的二分,这个复杂度是logn^2的,线段树上2分是logn的,这个我就懒得写了。

代码

#include<bits/stdc++.h>
using namespace std;
const int maxn = 2e5+7;
int a[maxn],index[maxn],ans[maxn],sum[maxn];
int n;
int lowbit(int x){
return x&(-x);
} void update(int x,int val){
while(x <= n){
sum[x] += val;
x += lowbit(x);
}
}
int query(int x){
int s=0;
while(x>0){
s += sum[x];
x -= lowbit(x);
}
return s;
}
void solve(){
scanf("%d",&n);
for(int i=1;i<=n;i++){
cin>>a[i];
index[i]=0;
}
set<pair<int,int> >S;
for(int i=1;i<=n;i++){
S.insert(make_pair(-a[i],i));
}
int m;scanf("%d",&m);
vector<pair<pair<int,int>,int>>Q;
for(int i=0;i<m;i++){
int x,y;scanf("%d%d",&x,&y);
Q.push_back(make_pair(make_pair(x,y),i));
}
sort(Q.begin(),Q.end());
int now = 0;
for(int i=0;i<Q.size();i++){
while(now<Q[i].first.first){
now=now+1;
pair<int,int> tmp = *S.begin();
update(tmp.second,1);
index[tmp.second]=1;
S.erase(tmp);
}
int pos = Q[i].first.second;
int l=1,r=n,Ans=n;
while(l<=r){
int mid=(l+r)/2;
if(query(mid)>=pos){
Ans=mid;
r=mid-1;
}else{
l=mid+1;
}
}
ans[Q[i].second]=a[Ans];
}
for(int i=0;i<m;i++){
cout<<ans[i]<<endl;
}
}
int main(){
solve();
}

Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) D2. Optimal Subsequences (Hard Version) 数据结构 贪心的更多相关文章

  1. Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3

    A,有多个线段,求一条最短的线段长度,能过覆盖到所又线段,例如(2,4)和(5,6) 那么我们需要4 5连起来,长度为1,例如(2,10)(3,11),用(3,10) 思路:我们想一下如果题目说的是最 ...

  2. Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) F2. Wrong Answer on test 233 (Hard Version) dp 数学

    F2. Wrong Answer on test 233 (Hard Version) Your program fails again. This time it gets "Wrong ...

  3. Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) E. Arson In Berland Forest 二分 前缀和

    E. Arson In Berland Forest The Berland Forest can be represented as an infinite cell plane. Every ce ...

  4. Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) C. Messy 构造

    C. Messy You are fed up with your messy room, so you decided to clean it up. Your room is a bracket ...

  5. Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) B. Box 贪心

    B. Box Permutation p is a sequence of integers p=[p1,p2,-,pn], consisting of n distinct (unique) pos ...

  6. Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) A. Math Problem 水题

    A. Math Problem Your math teacher gave you the following problem: There are n segments on the x-axis ...

  7. Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) C Messy

    //因为可以反转n次 所以可以得到任何可以构成的序列 #include<iostream> #include<string> #include<vector> us ...

  8. Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) B Box

    #include<bits/stdc++.h> using namespace std; ]; ]; int main() { int total; cin>>total; w ...

  9. Codeforces Round #602 (Div. 2, based on Technocup 2020 Elimination Round 3) A Math Problem

    //只要从所有区间右端点的最小值覆盖到所有区间左端点的最大值即可 #include<iostream> using namespace std ; int x,y; int n; int ...

随机推荐

  1. Linux学习入门-------------------------VMvare与镜像的安装与配置

    版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明.本文链接:https://blog.csdn.net/qq_39038465/article/d ...

  2. MATLAB实例:绘制条形图

    MATLAB实例:绘制条形图 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 用MATLAB绘制条形图,自定义条形图的颜色.图例位置.横坐标名称.显示条 ...

  3. 《Web Development with Go》Mangodb查询collection内所有记录

    相当于select * from table; package main import ( "fmt" "log" "time" " ...

  4. MASMPlus连接出错:error LNK2001: unresolved external symbol _WinMainCRTStartup

    坑:汇编语言第三版使用的是masm5.0,网上找到了一个masm32,一看名字,不就是masm的32位版本吗.然也..这是另外一个软件 MASM32并非是指Microsoft的MASM宏汇编器.MAS ...

  5. Map随笔:有序的HashMap——LinkedHashMap

    目录 Map随笔:有序的HashMap--LinkedHashMap 一,概述 二,源码结构 三,总结 Map随笔:有序的HashMap--LinkedHashMap 一,概述 ​ LinkedHas ...

  6. 【问题篇四】启动报DataSource错误

    初建一个简单的spring boot 项目,启动后会报错:就是在项目启动的时候在 resource目录下没有加载到配置信息:如果项目只是想简单的启动运行,不进行数据库操作可以在 启动类上做如下处理便可 ...

  7. 洛谷 SP263 Period

    洛谷 SP263 Period 题目描述 For each prefix of a given string S* with N* characters (each character has an ...

  8. 【Springboot】spring-boot-starter-redis包报错 :unknown

    springboot集成redis时,引入spring-boot-starter-redis包报错,maven找不到这个资源.如下图: 我的项目中,spring boot是 用的2.0.4版本.spr ...

  9. C++入门到理解阶段二基础篇(9)——C++结构体

    1.概述 前面我们已经了解到c++内置了常用的数据类型,比如int.long.double等,但是如果我们要定义一个学生这样的数据类型,c++是没有的,此时就要用到结构体,换言之通过结构体可以帮我们定 ...

  10. IdentityServer4 常见问题 - 用户拒绝授权后报错

    1.问题说明 在 IdentityServer4 Web 授权中,一般会有一个显示客户端需要获取用户的那些信息的页面,询问用户是否同意: 在这个页面如果我们点击"No, Do Not All ...