数据挖掘算法(一)C4.5
统计了14天的气象数据D(指标包括outlook,temperature,humidity,windy),并已知这些天气是否打球(play)。如果给出新一天的气象指标数据:sunny,cool,high,TRUE,判断一下会不会去打球。
outlook | temperature | humidity | windy | play |
sunny | hot | high | FALSE | no |
sunny | hot | high | TRUE | no |
overcast | hot | high | FALSE | yes |
rainy | mild | high | FALSE | yes |
rainy | cool | normal | FALSE | yes |
rainy | cool | normal | TRUE | no |
overcast | cool | normal | TRUE | yes |
sunny | mild | high | FALSE | no |
sunny | cool | normal | FALSE | yes |
rainy | mild | normal | FALSE | yes |
sunny | mild | normal | TRUE | yes |
overcast | mild | high | TRUE | yes |
overcast | hot | normal | FALSE | yes |
rainy | mild | high | TRUE | no |
预备知识:信息熵
熵是无序性(或不确定性)的度量指标。假如事件A的全概率划分是(A1,A2,...,An),每部分发生的概率是(p1,p2,...,pn),那信息熵定义为:
通常以2为底数,所以信息熵的单位是bit。
C4.5算法
构造树的基本想法是随着树深度的增加,节点的熵迅速地降低。熵降低的速度越快越好,这样我们有望得到一棵高度最矮的决策树。
在没有给定任何天气信息时,根据历史数据,我们只知道新的一天打球的概率是9/14,不打的概率是5/14。此时的熵为:
Info(D) = -9/14 * log2(9/14) - 5/14 * log2(5/14) = 0.940
属性有4个:outlook,temperature,humidity,windy。我们首先要决定哪个属性作树的根节点。
对每项指标分别统计:在不同的取值下打球和不打球的次数。
outlook | temperature | humidity | windy | play | |||||||||
yes | no | yes | no | yes | no | yes | no | yes | no | ||||
sunny | 2 | 3 | hot | 2 | 2 | high | 3 | 4 | FALSE | 6 | 2 | 9 | 5 |
overcast | 4 | 0 | mild | 4 | 2 | normal | 6 | 1 | TRUR | 3 | 3 | ||
rainy | 3 | 2 | cool | 3 | 1 |
下面对属性集中每个属性分别计算信息熵,如下所示:
Info(outlook) = 5/14 * [- 2/5 * log2(2/5) – 3/5 * log2(3/5)] + 4/14 * [ - 4/4 * log2(4/4) - 0/4 * log2(0/4)] + 5/14 * [ - 3/5 * log2(3/5) – 2/5 * log2(2/5)] = 0.694
Info(temperature) = 4/14 * [- 2/4 * log2(2/4) – 2/4 * log2(2/4)] + 6/14 * [ - 4/6 * log2(4/6) - 2/6 * log2(2/6)] + 4/14 * [ - 3/4 * log2(3/4) – 1/4 * log2(1/4)] = 0.911
Info(huminity) = 7/14 * [- 3/7 * log2(3/7) – 4/7 * log2(4/7)] + 7/14 * [ - 6/7 * log2(6/7) - 1/7 * log2(1/7)] = 0.789
Info(windy) = 6/14 * [- 3/6 * log2(3/6) – 3/6 * log2(3/6)] + 8/14 * [ - 6/8 * log2(6/8) - 2/8 * log2(2/8)] = 0.892
根据上面的数据,我们可以计算选择第一个根结点所依赖的信息增益值,计算如下所示:
gain(outlook) = Info(D) - Info(outlook) = 0.940 - 0.694 = 0.246
gain(temperature) = Info(D) - Info(temperature) = 0.940 - 0.911 = 0.029
gain(huminity) = Info(D) - Info(huminity) = 0.940 - 0.789 = 0.151
gain(windy) = Info(D) - Info(windy) = 0.940 - 0.892 = 0.048
接下来,我们计算分裂信息度量H(V):
- outlook属性
属性outlook有3个取值,其中sunny有5个样本、rainy有5个样本、overcast有4个样本,则
H(outlook) = - 5/14 * log2(5/14) - 5/14 * log2(5/14) - 4/14 * log2(4/14) = 1.577406282852345
- temperature属性
属性temperature有3个取值,其中Hot有4个样本、Mild有6个样本、Cool有4个样本,则
H(temperature) = - 4/14 * log2(4/14) - 6/14 * log2(6/14) - 4/14 * log2(4/14) = 1.5566567074628228
- huminity属性
属性huminity有2个取值,其中Normal有7个样本、High有7个样本,则
H(huminity) = - 7/14 * log2(7/14) - 7/14 * log2(7/14) = 1.0
- windy属性
属性windy有2个取值,其中True有6个样本、False有8个样本,则
H(windy) = - 6/14 * log2(6/14) - 8/14 * log2(8/14) = 0.9852281360342516
根据上面计算结果,我们可以计算信息增益率,如下所示:
IGR(outlook) = Info(outlook) / H(outlook) = 0.246/1.577406282852345 = 0.15595221261270145
IGR(temperature) = Info(temperature) / H(temperature) = 0.029 / 1.5566567074628228 = 0.018629669509642094
IGR(huminity) = Info(huminity) / H(huminity) = 0.151/1.0 = 0.151
IGR(windy) = Info(windy) / H(windy) = 0.048/0.9852281360342516 = 0.048719680492692784
所以我们可以选出第一个根节点是outlook
最后得到的决策树为:
参考文献:
[1]http://blog.csdn.net/xuxurui007/article/details/18045943
[2]http://www.cnblogs.com/zhangchaoyang/articles/2842490.html
数据挖掘算法(一)C4.5的更多相关文章
- 【十大经典数据挖掘算法】C4.5
[十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 决策树模型与学习 决策树(de ...
- 【十大经典数据挖掘算法】PageRank
[十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 我特地把PageRank作为[十大经 ...
- 【十大经典数据挖掘算法】EM
[十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 极大似然 极大似然(Maxim ...
- 【十大经典数据挖掘算法】AdaBoost
[十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 集成学习 集成学习(ensem ...
- 【十大经典数据挖掘算法】SVM
[十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART SVM(Support Vector ...
- 【十大经典数据挖掘算法】Naïve Bayes
[十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 朴素贝叶斯(Naïve Bayes) ...
- 【十大经典数据挖掘算法】k-means
[十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 引言 k-means与kNN虽 ...
- 【十大经典数据挖掘算法】Apriori
[十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 关联分析 关联分析是一类非常有 ...
- 【十大经典数据挖掘算法】kNN
[十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 引言 顶级数据挖掘会议ICDM ...
- 【十大经典数据挖掘算法】CART
[十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 前言 分类与回归树(Class ...
随机推荐
- 浅谈 Scrapy 爬虫(二)
越写越像官方文档的翻译,偏离了初衷.写一些官方文档里没有的内容吧. 在不限制宽带的环境下,根据页面的大小, Scrapy 一秒能爬取40-70个页面,一天在400万到600万页面.也就是说 Scr ...
- u-boot移植 II
下面是韦老师的uboot移植攻略: A. 开发板的相关拷贝与修改 1. 在board文件夹下面, 将原来的smdk2410复制为100ask24x0目录, 并将smdk2410.c改名为100ask2 ...
- 在 ASP.NET MVC 中使用 HTTPS (SSL/TLS) -- 学习
在 ASP.NET MVC 中使用 HTTPS (SSL/TLS) IS 7如何实现http重定向https HTTPS 升级指南
- 浅析call和apply的不同
call, apply都属于Function.prototype的一个方法,它是JavaScript引擎内在实现的,因为属于Function.prototype,所以每个Function对象实例,也就 ...
- [JAVA] java class 基本定义 Note
java class 基本定义 Note 1 package abeen.note; 2 import java.util.*; 3 4 5 /* 6 java calss 基本 7 */ 8 pub ...
- javascirpt对象运用与JS变量
abcdefghijklmnopqrstuvwyz String 对象方法 charAt() 方法可返回指定位置的字符.stringObject.charAt(index)(index从0开始)[ht ...
- webstorm vue高亮
文件->设置->文件类型 第一步 第二步选择html 添加*.vue 搞定
- 什么是hasLayout?
想更好的理解CSS,尤其是IE下对CSS的渲染,hasLayout是一个非常有必要彻底弄清楚的概念,大多数IE下的显示错误,就是源于hasLayout.hasLayout是一种只读属性,有两种状态tr ...
- 关于APP程序员泡沫经济
这些年,移动互联网非常火,火到掀起学习iOS.安卓以及H5的热潮.有人将这些新技术作为自己的实力补充,增加竞争力:更多的人将它们作为主业,专职做移动开发.但是,即便有移动开发人员不断涌入,对整个行业来 ...
- Hibernate ManyToOne, OneToMany的理解
User to Group, Many to One的关系 Test Case 1: session.beginTransaction(); user.setGroup(group); session ...