在前几篇关于Functor和Applilcative typeclass的讨论中我们自定义了一个类型Configure,Configure类型的定义是这样的:

 case class Configure[+A](get: A)
object Configure {
implicit val configFunctor = new Functor[Configure] {
def map[A,B](ca: Configure[A])(f: A => B): Configure[B] = Configure(f(ca.get))
}
implicit val configApplicative = new Applicative[Configure] {
def point[A](a: => A) = Configure(a)
def ap[A,B](ca: => Configure[A])(cfab: => Configure[A => B]): Configure[B] = cfab map {fab => fab(ca.get)}
}
}

通过定义了Configure类型的Functor和Applicative隐式实例(implicit instance),我们希望Configure类型既是一个Functor也是一个Applicative。那么怎么才能证明这个说法呢?我们只要证明Configure类型的实例能遵循它所代表的typeclass操作定律就行了。Scalaz为大部分typeclass提供了测试程序(scalacheck properties)。在scalaz/scalacheck-binding/src/main/scala/scalaz/scalacheck/scalazProperties.scala里我们可以发现有关functor scalacheck properties:

 object functor {
def identity[F[_], X](implicit F: Functor[F], afx: Arbitrary[F[X]], ef: Equal[F[X]]) =
forAll(F.functorLaw.identity[X] _) def composite[F[_], X, Y, Z](implicit F: Functor[F], af: Arbitrary[F[X]], axy: Arbitrary[(X => Y)],
ayz: Arbitrary[(Y => Z)], ef: Equal[F[Z]]) =
forAll(F.functorLaw.composite[X, Y, Z] _) def laws[F[_]](implicit F: Functor[F], af: Arbitrary[F[Int]], axy: Arbitrary[(Int => Int)],
ef: Equal[F[Int]]) = new Properties("functor") {
include(invariantFunctor.laws[F])
property("identity") = identity[F, Int]
property("composite") = composite[F, Int, Int, Int]
}
}

可以看到:functor.laws[F[_]]主要测试了identity, composite及invariantFunctor的properties。在scalaz/Functor.scala文件中定义了这几条定律:

  trait FunctorLaw extends InvariantFunctorLaw {
/** The identity function, lifted, is a no-op. */
def identity[A](fa: F[A])(implicit FA: Equal[F[A]]): Boolean = FA.equal(map(fa)(x => x), fa) /**
* A series of maps may be freely rewritten as a single map on a
* composed function.
*/
def composite[A, B, C](fa: F[A], f1: A => B, f2: B => C)(implicit FC: Equal[F[C]]): Boolean = FC.equal(map(map(fa)(f1))(f2), map(fa)(f2 compose f1))
}

我们在下面试着对那个Configure类型进行Functor实例和Applicative实例的测试:

 import scalaz._
import Scalaz._
import shapeless._
import scalacheck.ScalazProperties._
import scalacheck.ScalazArbitrary._
import scalacheck.ScalaCheckBinding._
import org.scalacheck.{Gen, Arbitrary}
implicit def cofigEqual[A]: Equal[Configure[A]] = Equal.equalA
//> cofigEqual: [A#2921073]=> scalaz#31.Equal#41646[Exercises#29.ex1#59011.Confi
//| gure#2921067[A#2921073]]
implicit def configArbi[A](implicit a: Arbitrary[A]): Arbitrary[Configure[A]] =
a map { b => Configure(b) } //> configArbi: [A#2921076](implicit a#2921242: org#15.scalacheck#121951.Arbitra
//| ry#122597[A#2921076])org#15.scalacheck#121951.Arbitrary#122597[Exercises#29.
//| ex1#59011.Configure#2921067[A#2921076]]

除了需要的import外还必须定义Configure类型的Equal实例以及任意测试数据产生器(test data generator)configArbi[A]。我们先测试Functor属性:

 functor.laws[Configure].check                     //>
+ functor.invariantFunctor.identity: OK, passed tests.
//|
+ functor.invariantFunctor.composite: OK, passed tests.
//|
+ functor.identity: OK, passed tests.
//|
+ functor.composite: OK, passed tests.

成功通过Functor定律测试。

再看看Applicative的scalacheck property:scalaz/scalacheck/scalazProperties.scala

  object applicative {
def identity[F[_], X](implicit f: Applicative[F], afx: Arbitrary[F[X]], ef: Equal[F[X]]) =
forAll(f.applicativeLaw.identityAp[X] _) def homomorphism[F[_], X, Y](implicit ap: Applicative[F], ax: Arbitrary[X], af: Arbitrary[X => Y], e: Equal[F[Y]]) =
forAll(ap.applicativeLaw.homomorphism[X, Y] _) def interchange[F[_], X, Y](implicit ap: Applicative[F], ax: Arbitrary[X], afx: Arbitrary[F[X => Y]], e: Equal[F[Y]]) =
forAll(ap.applicativeLaw.interchange[X, Y] _) def mapApConsistency[F[_], X, Y](implicit ap: Applicative[F], ax: Arbitrary[F[X]], afx: Arbitrary[X => Y], e: Equal[F[Y]]) =
forAll(ap.applicativeLaw.mapLikeDerived[X, Y] _) def laws[F[_]](implicit F: Applicative[F], af: Arbitrary[F[Int]],
aff: Arbitrary[F[Int => Int]], e: Equal[F[Int]]) = new Properties("applicative") {
include(ScalazProperties.apply.laws[F])
property("identity") = applicative.identity[F, Int]
property("homomorphism") = applicative.homomorphism[F, Int, Int]
property("interchange") = applicative.interchange[F, Int, Int]
property("map consistent with ap") = applicative.mapApConsistency[F, Int, Int]
}
}

applicative.laws定义了4个测试Property再加上apply的测试property。这些定律(laws)在scalaz/Applicative.scala里定义了:

  trait ApplicativeLaw extends ApplyLaw {
/** `point(identity)` is a no-op. */
def identityAp[A](fa: F[A])(implicit FA: Equal[F[A]]): Boolean =
FA.equal(ap(fa)(point((a: A) => a)), fa) /** `point` distributes over function applications. */
def homomorphism[A, B](ab: A => B, a: A)(implicit FB: Equal[F[B]]): Boolean =
FB.equal(ap(point(a))(point(ab)), point(ab(a))) /** `point` is a left and right identity, F-wise. */
def interchange[A, B](f: F[A => B], a: A)(implicit FB: Equal[F[B]]): Boolean =
FB.equal(ap(point(a))(f), ap(f)(point((f: A => B) => f(a)))) /** `map` is like the one derived from `point` and `ap`. */
def mapLikeDerived[A, B](f: A => B, fa: F[A])(implicit FB: Equal[F[B]]): Boolean =
FB.equal(map(fa)(f), ap(fa)(point(f)))
}

再测试一下Configure类型是否也遵循Applicative定律:

 pplicative.laws[Configure].check                 //>
+ applicative.apply.functor.invariantFunctor.identity: OK, passed tests
//|
//| .
//|
+ applicative.apply.functor.invariantFunctor.composite: OK, passed test
//|
//| s.
//|
+ applicative.apply.functor.identity: OK, passed tests.
//|
+ applicative.apply.functor.composite: OK, passed tests.
//|
+ applicative.apply.composition: OK, passed tests.
//|
+ applicative.identity: OK, passed tests.
//|
+ applicative.homomorphism: OK, passed tests.
//|
+ applicative.interchange: OK, passed tests.
//|
+ applicative.map consistent with ap: OK, passed tests.

功通过了Applicative定律测试。现在我们可以说Configure类型既是Functor也是Applicative。

Scalaz(9)- typeclass:checking instance abiding the laws的更多相关文章

  1. Scalaz(8)- typeclass:Monoid and Foldable

    Monoid是种最简单的typeclass类型.我们先看看scalaz的Monoid typeclass定义:scalaz/Monoid.scala trait Monoid[F] extends S ...

  2. Scalaz(7)- typeclass:Applicative-idomatic function application

    Applicative,正如它的名称所示,就是FP模式的函数施用(function application).我们在前面的讨论中不断提到FP模式的操作一般都在管道里进行的,因为FP的变量表达形式是这样 ...

  3. Scalaz(6)- typeclass:Functor-just map

    Functor是范畴学(Category theory)里的概念.不过无须担心,我们在scala FP编程里并不需要先掌握范畴学知识的.在scalaz里,Functor就是一个普通的typeclass ...

  4. Scalaz(4)- typeclass:标准类型-Equal,Order,Show,Enum

    Scalaz是由一堆的typeclass组成.每一个typeclass具备自己特殊的功能.用户可以通过随意多态(ad-hoc polymorphism)把这些功能施用在自己定义的类型上.scala这个 ...

  5. Scalaz(5)- typeclass:my typeclass scalaz style-demo

    我们在上一篇讨论中介绍了一些基本的由scalaz提供的typeclass.这些基本typeclass主要的作用是通过操作符来保证类型安全,也就是在前期编译时就由compiler来发现错误.在这篇讨论中 ...

  6. Scalaz(25)- Monad: Monad Transformer-叠加Monad效果

    中间插播了几篇scalaz数据类型,现在又要回到Monad专题.因为FP的特征就是Monad式编程(Monadic programming),所以必须充分理解认识Monad.熟练掌握Monad运用.曾 ...

  7. Scalaz(43)- 总结 :FP就是实用的编程模式

    完成了对Free Monad这部分内容的学习了解后,心头豁然开朗,存在心里对FP的疑虑也一扫而光.之前也抱着跟大多数人一样的主观概念,认为FP只适合学术性探讨.缺乏实际应用.运行效率低,很难发展成现实 ...

  8. Scalaz(41)- Free :IO Monad-Free特定版本的FP语法

    我们不断地重申FP强调代码无副作用,这样才能实现编程纯代码.像通过键盘显示器进行交流.读写文件.数据库等这些IO操作都会产生副作用.那么我们是不是为了实现纯代码而放弃IO操作呢?没有IO的程序就是一段 ...

  9. Scalaz(40)- Free :versioned up,再回顾

    在上一篇讨论里我在设计示范例子时遇到了一些麻烦.由于Free Monad可能是一种主流的FP编程规范,所以在进入实质编程之前必须把所有东西都搞清楚.前面遇到的问题主要与scalaz Free的Free ...

随机推荐

  1. lua跨平台文件夹遍历匹配查找

    require"lfs" --[[Desc:在B路径D文件中下 搜寻A路径下的没用到的C类文件: 并且将没用到的B类文件名称打印出来: 设置好路径拖到lua自带编辑器中即可运行之; ...

  2. Atitit  深入理解命名空间namespace  java c# php js

    Atitit  深入理解命名空间namespace  java c# php js 1.1. Namespace还是package1 1.2. import同时解决了令人头疼的include1 1.3 ...

  3. cordova填坑

    cordova填坑

  4. InstallShield Limited Edition for Visual Studio 2013 图文教程(教你如何打包.NET程序)

    InstallShield Limited Edition for Visual Studio 2013 图文教程(教你如何打包.NET程序) 标签: InstallShieldVS2013 2015 ...

  5. JQuery学习之各种效果演示

    1.隐藏与显示:hide()和show(),toggle() **隐藏: $("#hide").click(function(){ $("p").hide(); ...

  6. sql server 链接到本地实例出错

    我在使用VS2010测试package的时候,突然发现sql server 链接到本地实例出错,出错信息如下: “ A network-related or instance-specific err ...

  7. SQL Pass北京举办第10次线下活动,欢迎报名

    活动主题: 探讨真实世界中的复制(第二季)与Windows Azure SQL Database内幕 地点:北京微软(中国)有限公司[望京利星行],三层308室 时间:2013年 9 月28日 13: ...

  8. Locations Section of OpenCascade BRep

    Locations Section of OpenCascade BRep eryar@163.com 摘要Abstract:本文结合OpenCascade的BRep格式描述文档和源程序,对BRep格 ...

  9. 文本溢出text-overflow和文本阴影text-shadow

    前面的话 CSS3新增了一些关于文本的样式,其中text-overflow文本溢出和text-shadow文本阴影有些特别.因为它们有对应的overflow溢出属性和box-shadow盒子阴影属性. ...

  10. 邻接矩阵有向图(三)之 Java详解

    前面分别介绍了邻接矩阵有向图的C和C++实现,本文通过Java实现邻接矩阵有向图. 目录 1. 邻接矩阵有向图的介绍 2. 邻接矩阵有向图的代码说明 3. 邻接矩阵有向图的完整源码 转载请注明出处:h ...