Bzoj 2038---[2009国家集训队]小Z的袜子(hose) 莫队算法
题目链接
http://www.lydsy.com/JudgeOnline/problem.php?id=2038
Description
作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿。终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命……
具体来说,小Z把这N只袜子从1到N编号,然后从编号L到R(L 尽管小Z并不在意两只袜子是不是完整的一双,甚至不在意两只袜子是否一左一右,他却很在意袜子的颜色,毕竟穿两只不同色的袜子会很尴尬。
你的任务便是告诉小Z,他有多大的概率抽到两只颜色相同的袜子。当然,小Z希望这个概率尽量高,所以他可能会询问多个(L,R)以方便自己选择。
Input
输入文件第一行包含两个正整数N和M。N为袜子的数量,M为小Z所提的询问的数量。接下来一行包含N个正整数Ci,其中Ci表示第i只袜子的颜色,相同的颜色用相同的数字表示。再接下来M行,每行两个正整数L,R表示一个询问。
Output
包含M行,对于每个询问在一行中输出分数A/B表示从该询问的区间[L,R]中随机抽出两只袜子颜色相同的概率。若该概率为0则输出0/1,否则输出的A/B必须为最简分数。(详见样例)
Sample Input
1 2 3 3 3 2
2 6
1 3
3 5
1 6
Sample Output
0/1
1/1
4/15
【样例解释】
询问1:共C(5,2)=10种可能,其中抽出两个2有1种可能,抽出两个3有3种可能,概率为(1+3)/10=4/10=2/5。
询问2:共C(3,2)=3种可能,无法抽到颜色相同的袜子,概率为0/3=0/1。
询问3:共C(3,2)=3种可能,均为抽出两个3,概率为3/3=1/1。
注:上述C(a, b)表示组合数,组合数C(a, b)等价于在a个不同的物品中选取b个的选取方案数。
【数据规模和约定】
30%的数据中 N,M ≤ 5000;
60%的数据中 N,M ≤ 25000;
100%的数据中 N,M ≤ 50000,1 ≤ L < R ≤ N,Ci ≤ N。
Source
题意:题目是中文的很简单,不再赘述;
思路:使用莫队算法,将区间进行分块排序,离线处理,在计算过程中,由区间(i,j) 到区间(i,j+1)时,可以进行O(1) 的处理;
代码如下:
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <map>
#include <vector>
using namespace std;
int SIZE;
int col[];
//int pos[50005];
long long f[];
struct Node
{
int l,r;
long long a,b;
int id;
}node[];
bool cmp1(const Node s1,const Node s2)
{
///return s1.r<s2.r; 这样排序超时;
if((s1.l-1)/SIZE==(s2.l-1)/SIZE) return s1.r<s2.r;
else return (s1.l-1)/SIZE<(s2.l-1)/SIZE;
}
bool cmp2(const Node s1,const Node s2)
{
return s1.id<s2.id;
}
long long GCD(long long a,long long b)
{
return (b==)?a:GCD(b,a%b);
}
int main()
{
int N,M;
while(scanf("%d%d",&N,&M)!=EOF)
{
SIZE=(int)sqrt(N);
memset(f,,sizeof(f));
for(int i=;i<=N;i++)
scanf("%d",&col[i]);
for(int i=;i<M;i++)
{
scanf("%d%d",&node[i].l,&node[i].r);
node[i].id=i;
}
sort(node,node+M,cmp1);
int fl=,fr=;
long long ans=;
for(int i=;i<M;i++)
{
if(fr<node[i].r)
{
while(fr<node[i].r) {
ans=ans+*f[col[++fr]]+;
f[col[fr]]++;
}
}
if(fr>node[i].r)
{
while(fr>node[i].r) {
ans=ans-*f[col[fr]]+;
f[col[fr]]--; fr--;
}
}
if(fl<node[i].l)
{
while(fl<node[i].l){
ans=ans-*f[col[fl]]+;
f[col[fl]]--; fl++;
}
}
if(fl>node[i].l)
{
while(fl>node[i].l){
ans=ans+*f[col[--fl]]+;
f[col[fl]]++;
}
}
node[i].a=ans-(node[i].r-node[i].l+);
node[i].b=(long long)(node[i].r-node[i].l+)*(node[i].r-node[i].l);
long long g=GCD(node[i].a,node[i].b);
node[i].a= node[i].a/g;
node[i].b= node[i].b/g;
}
sort(node,node+M,cmp2);
for(int i=;i<M;i++)
printf("%lld/%lld\n",node[i].a,node[i].b); }
return ;
}
/*
6 4
1 2 3 3 3 2
2 6
1 3
3 5
1 6
*/
Bzoj 2038---[2009国家集训队]小Z的袜子(hose) 莫队算法的更多相关文章
- BZOJ 2038: [2009国家集训队]小Z的袜子(hose) [莫队算法]【学习笔记】
2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 7687 Solved: 3516[Subm ...
- Bzoj 2038: [2009国家集训队]小Z的袜子(hose) 莫队,分块,暴力
2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 5763 Solved: 2660[Subm ...
- BZOJ 2038: [2009国家集训队]小Z的袜子(hose) ( 莫队 )
莫队..先按sqrt(n)分块, 然后按块的顺序对询问排序, 同块就按右端点排序. 然后就按排序后的顺序暴力求解即可. 时间复杂度O(n1.5) --------------------------- ...
- BZOJ 2038: [2009国家集训队]小Z的袜子(hose)&&莫对算法
这里跟曼哈顿最小生成树没有太大的关系. 时间复杂度证明: [BZOJ2038 小Z的袜子 AC代码] 排序方式: 第一关键字:l所在的块: 第二关键字:r从小到大. #include<cstdi ...
- bzoj 2038: [2009国家集训队]小Z的袜子(hose) (莫队)
Description 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命……具体来说,小Z把这N只袜 ...
- BZOJ2038: [2009国家集训队]小Z的袜子(hose) -- 莫队算法 ,,分块
2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 3577 Solved: 1652[Subm ...
- [BZOJ2038] [2009国家集训队]小Z的袜子(hose) 莫队算法练习
2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 10299 Solved: 4685[Sub ...
- BZOJ 2038: [2009国家集训队]小Z的袜子 (莫队)
题目传送门:小Z的袜子 Description 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命…… ...
- 【bzoj2038】[2009国家集训队]小Z的袜子(hose) 莫队算法
原文地址:http://www.cnblogs.com/GXZlegend/p/6803860.html 题目描述 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终 ...
- BZOJ2038: [2009国家集训队]小Z的袜子(hose) 莫队算法
要使用莫队算法前提 ,已知[l,r]的答案,要能在logn或者O(1)的时间得到[l+1,r],[l-1,r],[l,r-1],[l,r+1],适用于一类不修改的查询 优美的替代品——分块将n个数分成 ...
随机推荐
- struts2学习笔记之十二:struts2对异常的自动处理
在UserAction类中引发异常,但是不处理 package com.djoker.struts2; import java.util.Date; import org.apache.struts2 ...
- Sublime Text配置Python开发利器
Sublime Text配置Python开发利器 收好了 自动提示 jedi 代码格式化 Python PEP8 autoformat 如果还需要在shell中搞搞研究的话,ipython将是很好的选 ...
- ASPNET MVC中断请求
ASPNET MVC如何正确的中断请求? 感觉是这样? 在aspnet开发过程中如果想要中断当前的http处理,以前在aspnet中一直是Response.End(); 在这Response.End( ...
- 分析优秀的.NET 文档设计工具Vsdocman 7.1 软件保护技术
Vsdocman是一个优秀的.NET源代码注释编写工具,方便的以GUI的方式设计.NET源代码的注释. 我们知道.NET源代码的注释是Xml格式的注释,在生成程序集时,只需用选中生成Xml注释,Vis ...
- 【WP 8.1开发】如何处理摄像头翻转的问题
模拟器就像我们儿时的梦境,在其上运行应用程序时,一切总是那么美好的:而真机测试如同我们这个纷乱无章的现实世界,你会遇到各种小人和畜生,常常会遭受莫名的挫折.面对挫折,有人迎难而上,或不予理采,走自己的 ...
- CSS 框模型( Box module )
框和布局 在 KB005: CSS 层叠 中已经介绍了 CSS 的重要之处.CSS 可以说是页面表现的基础, CSS 可以控制布局,控制元素的渲染. 布局是讲在电影画面构图中,对环境的布置.人物地位的 ...
- Swift泛型协议的N种用法
They said "you should learn a new language every year," so I learned Swift. Now I learn ...
- 小技巧找出一个php的cron脚本出问题的代码行
这个小技巧虽然很小,但是很有用. 我写了一个cron脚本,但是隔一天发现,这个昨天的cron脚本还一直在跑着,没有停下来,一定是里面有个程序堵住了. 但是如果我重新跑又需要很多时间.这个怎么办? 现在 ...
- ffmpeg使用转码学习
ffmpeg在官网上描述自身:是一个对视频和音频进行记录,转换,流化的完整的跨平台解决方案.事实上,现在有很多工具都是基于ffmpeg来进行视频音频的处理工具的.比如鼎鼎大名的格式工厂,就是使用ffm ...
- 四、BLE(中)
1.1 GATT Manager GATT MGR模块管理所有的GATT服务,同时也是连接GATT模块与GATT ServiceS模块的桥梁. 1.1.1 主要功能模块 先来看一张该 ...