题目链接

http://www.lydsy.com/JudgeOnline/problem.php?id=2038

Description

作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿。终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命……
具体来说,小Z把这N只袜子从1到N编号,然后从编号L到R(L 尽管小Z并不在意两只袜子是不是完整的一双,甚至不在意两只袜子是否一左一右,他却很在意袜子的颜色,毕竟穿两只不同色的袜子会很尴尬。
你的任务便是告诉小Z,他有多大的概率抽到两只颜色相同的袜子。当然,小Z希望这个概率尽量高,所以他可能会询问多个(L,R)以方便自己选择。

Input

输入文件第一行包含两个正整数N和M。N为袜子的数量,M为小Z所提的询问的数量。接下来一行包含N个正整数Ci,其中Ci表示第i只袜子的颜色,相同的颜色用相同的数字表示。再接下来M行,每行两个正整数L,R表示一个询问。

Output

包含M行,对于每个询问在一行中输出分数A/B表示从该询问的区间[L,R]中随机抽出两只袜子颜色相同的概率。若该概率为0则输出0/1,否则输出的A/B必须为最简分数。(详见样例)

Sample Input

6 4
1 2 3 3 3 2
2 6
1 3
3 5
1 6

Sample Output

2/5
0/1
1/1
4/15
【样例解释】
询问1:共C(5,2)=10种可能,其中抽出两个2有1种可能,抽出两个3有3种可能,概率为(1+3)/10=4/10=2/5。
询问2:共C(3,2)=3种可能,无法抽到颜色相同的袜子,概率为0/3=0/1。
询问3:共C(3,2)=3种可能,均为抽出两个3,概率为3/3=1/1。
注:上述C(a, b)表示组合数,组合数C(a, b)等价于在a个不同的物品中选取b个的选取方案数。
【数据规模和约定】
30%的数据中 N,M ≤ 5000;
60%的数据中 N,M ≤ 25000;
100%的数据中 N,M ≤ 50000,1 ≤ L < R ≤ N,Ci ≤ N。

Source

版权所有者:莫涛

题意:题目是中文的很简单,不再赘述;

思路:使用莫队算法,将区间进行分块排序,离线处理,在计算过程中,由区间(i,j) 到区间(i,j+1)时,可以进行O(1) 的处理;

代码如下:

#include <iostream>
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <map>
#include <vector>
using namespace std;
int SIZE;
int col[];
//int pos[50005];
long long f[];
struct Node
{
int l,r;
long long a,b;
int id;
}node[];
bool cmp1(const Node s1,const Node s2)
{
///return s1.r<s2.r; 这样排序超时;
if((s1.l-1)/SIZE==(s2.l-1)/SIZE) return s1.r<s2.r;
else return (s1.l-1)/SIZE<(s2.l-1)/SIZE;
}
bool cmp2(const Node s1,const Node s2)
{
return s1.id<s2.id;
}
long long GCD(long long a,long long b)
{
return (b==)?a:GCD(b,a%b);
}
int main()
{
int N,M;
while(scanf("%d%d",&N,&M)!=EOF)
{
SIZE=(int)sqrt(N);
memset(f,,sizeof(f));
for(int i=;i<=N;i++)
scanf("%d",&col[i]);
for(int i=;i<M;i++)
{
scanf("%d%d",&node[i].l,&node[i].r);
node[i].id=i;
}
sort(node,node+M,cmp1);
int fl=,fr=;
long long ans=;
for(int i=;i<M;i++)
{
if(fr<node[i].r)
{
while(fr<node[i].r) {
ans=ans+*f[col[++fr]]+;
f[col[fr]]++;
}
}
if(fr>node[i].r)
{
while(fr>node[i].r) {
ans=ans-*f[col[fr]]+;
f[col[fr]]--; fr--;
}
}
if(fl<node[i].l)
{
while(fl<node[i].l){
ans=ans-*f[col[fl]]+;
f[col[fl]]--; fl++;
}
}
if(fl>node[i].l)
{
while(fl>node[i].l){
ans=ans+*f[col[--fl]]+;
f[col[fl]]++;
}
}
node[i].a=ans-(node[i].r-node[i].l+);
node[i].b=(long long)(node[i].r-node[i].l+)*(node[i].r-node[i].l);
long long g=GCD(node[i].a,node[i].b);
node[i].a= node[i].a/g;
node[i].b= node[i].b/g;
}
sort(node,node+M,cmp2);
for(int i=;i<M;i++)
printf("%lld/%lld\n",node[i].a,node[i].b); }
return ;
}
/*
6 4
1 2 3 3 3 2
2 6
1 3
3 5
1 6
*/

Bzoj 2038---[2009国家集训队]小Z的袜子(hose) 莫队算法的更多相关文章

  1. BZOJ 2038: [2009国家集训队]小Z的袜子(hose) [莫队算法]【学习笔记】

    2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 7687  Solved: 3516[Subm ...

  2. Bzoj 2038: [2009国家集训队]小Z的袜子(hose) 莫队,分块,暴力

    2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 5763  Solved: 2660[Subm ...

  3. BZOJ 2038: [2009国家集训队]小Z的袜子(hose) ( 莫队 )

    莫队..先按sqrt(n)分块, 然后按块的顺序对询问排序, 同块就按右端点排序. 然后就按排序后的顺序暴力求解即可. 时间复杂度O(n1.5) --------------------------- ...

  4. BZOJ 2038: [2009国家集训队]小Z的袜子(hose)&&莫对算法

    这里跟曼哈顿最小生成树没有太大的关系. 时间复杂度证明: [BZOJ2038 小Z的袜子 AC代码] 排序方式: 第一关键字:l所在的块: 第二关键字:r从小到大. #include<cstdi ...

  5. bzoj 2038: [2009国家集训队]小Z的袜子(hose) (莫队)

    Description 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命……具体来说,小Z把这N只袜 ...

  6. BZOJ2038: [2009国家集训队]小Z的袜子(hose) -- 莫队算法 ,,分块

    2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 3577  Solved: 1652[Subm ...

  7. [BZOJ2038] [2009国家集训队]小Z的袜子(hose) 莫队算法练习

    2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 10299  Solved: 4685[Sub ...

  8. BZOJ 2038: [2009国家集训队]小Z的袜子 (莫队)

    题目传送门:小Z的袜子 Description 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命…… ...

  9. 【bzoj2038】[2009国家集训队]小Z的袜子(hose) 莫队算法

    原文地址:http://www.cnblogs.com/GXZlegend/p/6803860.html 题目描述 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终 ...

  10. BZOJ2038: [2009国家集训队]小Z的袜子(hose) 莫队算法

    要使用莫队算法前提 ,已知[l,r]的答案,要能在logn或者O(1)的时间得到[l+1,r],[l-1,r],[l,r-1],[l,r+1],适用于一类不修改的查询 优美的替代品——分块将n个数分成 ...

随机推荐

  1. Atitit  从 RGB 到 HSL 或 HSV 的转换

    Atitit  从 RGB 到 HSL 或 HSV 的转换 1.1. 从 RGB 到 HSL 或 HSV 的转换公式与原理1 1.2. public static HSV RGB2HSV(Color ...

  2. Atitit 知识图谱的数据来源

    Atitit 知识图谱的数据来源   2. 知识图谱的数据来源1 a) 百科类数据2 b) 结构化数据3 c) 半结构化数据挖掘AVP (垂直站点爬虫)3 d) 通过搜索日志(query record ...

  3. cordovas禁止横屏

    cordovas禁止横屏 官网 http://cordova.apache.org/docs/en/latest/config_ref/index.html#preference 配置config.x ...

  4. 高性能Cordova App开发学习笔记

    高性能Cordova App开发学习笔记 文件结构 添加插件 构建准备 各个www的作用,prepare命令会将hello\www的内容会拷贝到platform下的wwww目录,知道该改哪里了吧?如果 ...

  5. Mybatis中SqlMapper配置的扩展与应用(1)

    奋斗了好几个晚上调试程序,写了好几篇博客,终于建立起了Mybatis配置的扩展机制.虽然扩展机制是重要的,然而如果没有真正实用的扩展功能,那也至少是不那么鼓舞人心的,这篇博客就来举几个扩展的例子. 这 ...

  6. 那些年我们写过的T-SQL(下篇)

    下篇的内容很多都会在工作中用到,尤其是可编程对象,那些年我们写过的存储过程,有木有?到目前为止很多大型传统企业仍然很依赖存储过程.这部分主要难理解的部分是事务和锁机制这块,本文会进行简单的阐述.虽然很 ...

  7. Apache Tomcat

    官网:http://tomcat.apache.org/ Documentation:http://tomcat.apache.org/tomcat-8.0-doc/index.html

  8. 仿Java的AtomicMarkableReference的AtomicMarkablePointer(C++)

    //@author: Zou Xiaohang //@describe: this class is like AtomicMarkableReference which is in java con ...

  9. Locations Section of OpenCascade BRep

    Locations Section of OpenCascade BRep eryar@163.com 摘要Abstract:本文结合OpenCascade的BRep格式描述文档和源程序,对BRep格 ...

  10. Android之自动文本输入识别提示

    相信大家都熟悉自动识别提示吧,在我们的生活中随处可见,今天就让我为大家简单介绍一下它是如何设计的. 所谓自动识别输入即是根据用户输入的已有信息,为用户提示可能的值,方便用户完成输入.在Android设 ...